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Preface 

This volume contains the 2002 Annual Progress Reports of the postdoctoral fellows 
and visiting scholars of the Center for Turbulence Research. In 2002 CTR sponsored 18 
resident Postdoctoral Fellows, 12 visiting scholars and 5 doctoral students and hosted 
10 Research Associates. The 35 reports contained in this volume cover a wide range of 
subjects representing NASA's wide ranging interests. The papers are roughly classified 
into six different groups, although many treat two or more subjects. In addition, in the 
summer of 2002, CTR sponsored its ninth biennial Summer Program which was the 
largest ever with fifty participants firom ten countries. A separate volume containing the 
proceedings of this Summer Program was published earher this year. 

Turbulent combustion remains the largest component of the CTR's core program. This 
program and several related activities at CTR are supported by NASA's Ultra Eflicient 
Engine Technology Program. It is also intimately connected with the Department of 
Energy's ASCI program at Stanford which develops the technology for numerical simu- 
lation of realistic aircraft engines using state of the art massively parallel computers. In 
combustion modehng the attention has been directed to the modeUng of higher levels of 
complexity such as spray dynamics, radiation and soot formation. Major aircraft engine 
manufacturers have shown considerable interest in this program; in particular, a signif- 
icant active collaboration exists between CTR and the Pratt & Whitney Corporation. 
CTR's combustion program is essentially based on the large-eddy simulation technique, 
LES, which is actively being pursued at CTR for this and many other applications. 
Important accomplishments in LES included simulations with three-dimensional filters, 
which result in grid independent calculations (that is why we call it "true" LES), and the 
development of the methodology for integration of LES and Reynolds Averaged compu- 
tations. Optimization techniques axe being studied and used for the important problem 
of wall boundary conditions for LES as well as for optimal shape design for aeroacoustic 
and aerodynamic performance gains. 

Turbulence in geophysical and astrophysical apphcations is receiving increased atten- 
tion at CTR and is expected to occupy a larger fraction of the CTR's core program. We 
believe that CTR is poised to contribute significantly to this area especially by provid- 
ing improved subgrid scale models, high fidefity numerical methods, advanced computer 
programing tools and insights in turbulence physics in multi-phase and reacting flows. 
CTR is broadening its scope of research to more general non-Unear multi-scale phenom- 
ena. One such area is computational biology which is a fast developing field involving 
very intensive computing. This year the work at CTR focused on cardiovascular fluid dy- 
namics using imaging techniques, and aerodynamics of natural phenomena. Hypersonic 
transition with real gas effects is of interest to NASA for space transportation and is an 
area of active research at CTR. 

We thank Millie Chethik and Marlene Lomuljo-Bautista for their day-to-day manage- 
ment of the Center. Special thanks are due to Dr. MassimiUano Fatica for his help with 
the final preparation of this report. 



We dedicate this volume to the memory of the enormous contributions of Charles David 
Pierce. Charles was a student and later a Research Associate at CTR. His dissertation was 
the pioneering step that launched CTR's program in large eddy simulation of turbulent 
combustion. Chkrles' legacy computer codes and original ideas in modeling turbulent 
combustion and numerical methods remain at the heart of CTR's research enterprise. 

Parviz Moin 
Nagi N. Mansour 

Peter Bradshaw (editor) 

This volume is available as a .pdf file on the Web at http://ctr.stanford.edu 
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A G-equation formulation for large-eddy 
simulation of premixed turbulent combustion 

By H. Pitsch 

1. Motivation and objectives 
Premixed turbulent combustion in technical devices often occurs in thin flame fronts. 

The propagation of these fronts, and hence, for instance, the heat release, are governed 
by the interaction of transport processes and chemistry within the front. In flamelet 
models this strong coupling is expressed by treating the flame front as a thin interface 
propagating with a laminar burning velocity SL- The coupling of transport and chemistry 
is reflected in the scaling of the laminar burning velocity, which can be expressed as 
SL ~ y/D/tc, where D is the diffusion coefficient and tc is the chemical time scale. 
Flamelet models for premixed turbulent combustion have been extensively used in the 
past and different models have been formulated for Reynolds averaged (Bray et al. (1985); 
Peters (2000)) and large-eddy simulations (LES) (Hawkes & Cant (2000); Kim & Menon 
(2000); Chaijravarthy & Menon (2001); Pitsch & Duchamp de Lageneste (2002)). 

The G-equation model proposed by WiUiams (1985) is based on the flamelet modeling 
assumptions and uses a level-set method to describe the evolution of the flame front as 
an interface between the unburned and burned gases. The level-set function G is a scalar 
field defined such that the flame front position is at G = Go, and that G is negative 
in the unburned mixture. The instantaneous and local G-equation can be derived by 
considering the instantaneous flame smrface. An impHcit representation of this surface 
can be given as 

G(a;,f)-Go = 0, (1.1) 

which defines the level-set function G. Here, x is the vector of space coordinates. Differ- 
entiating Eq. (1.1), one obtains 

^ + ^.VG = 0, (1.2) 

where Xf is the flame front location. If the curvature radius of the instantaneous flame 
front is locally larger than the flame thickness, the flame is in the corrugated flamelets 
regime, and the flame front propagation speed is given by 

^ = v + SLn. (1.3) 

Here, v is the local flow velocity and sj, is the laminar burning velocity. The flame normal 
vector n is defined to be directed into the unburned mixture and can be expressed as 

Combining Eqs. (1.2) and (1.3) yields the instantaneous G-equation 

^ + VVG = SL\VG\. (1.5) 
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Since this equation has been derived from Eqs. (1.1) and (1.3), which both only describe 
the flame surface, also Eq. (1.5) is valid at the flame surface only. The remaining G-field 
is arbitrary and commonly defined to be a distance function. 

The location of Go can be defined to be anywhere in the flame, for instance at a given 
temperature iso-surface. Then, in Eq. (1.5), the velocity v is evaluated at that location, 
and the laminar biurning velocity SL has to be defined with respect to that location as 
well. Typically, Go is defined to be either immediately ahead of the flame in the unburned, 
or immediately behind the flame in the burned gases. The burning velocities deflned with 
respect to the unburned and burned are denoted as SL^U and SL^, respectively. 

Peters (1992, 1999, 2000) has developed an appropriate theory for premixed turbulent 
combustion describing the corrugated flamelets and the thin reaction zones regimes based 
on the G-equation formulation. Peters (2000) and Oberlack et al. (2001) pointed out that, 
since the G-field has physical meaning only at G = Go, in order to derive the Reynolds 
averaged G-equation, conventional averaging of the G-field cannot be applied. For LES, 
this implies that not only is it impossible to obtain a filtered G-field from filtering the 
instantaneous resolved field, but also that the filter kernels, which are usually being used 
for filtering the velocity and scalar fields cannot be applied. In the application of the G- 
equation in LES, these facts have not been considered in the past. Hence, we first need to 
develop a filter kernel that takes information only from the instantaneous resolved flame 
surface. This will be done in the next section. Thereafter, the equation for the filtered 
flame front position will be derived. The resulting equation has two unclosed terms, a 
flame front conditionally averaged flow velocity appearing in the convection term, and 
the sub-filter burning velocity. To relate the conditional velocity to the unconditionally 
filtered velocity, which is known from the solution of the momentum equations, a model 
for this quantity will also be developed. Finally, we will derive an equation for the sub- 
filter flame front wrinkUng, which will lead to an analjrtic model for the sub-filter burning 
velocity. 

2. G-Equation for the filtered flame location valid in the corrugated flamelets 
regime 

Peters (2000) and Oberlack et al. (2001) have pointed out that for the derivation of 
a G-equation for the ensemble or time averaged flame location the traditional averaging 
of the entire G-field cannot be applied. Because the G-field has physical significance 
only for G = Go, only the Go iso-surface can be of relevance in the averaging procedmre 
and the remaining G-field, which can be arbitrarily defined, must not be used. Instead, 
Peters (2000) has proposed an averaging procedure that only uses the probabiHty density 
function (pdf) of finding G = Go at a particular location. This procedure was described 
only for the one-dimensional case. Oberlack et al. (2001) developed a rigorous averaging 
procedure for the three-dimensional case. Through the consistent application of this 
averaging procedure, a G-equation for the averaged flame location and an equation for 
the flame brush thickness have been derived for the corrugated flamelets regime. In this 
section, we will first develop an appropriate LES filter and then derive a G-equation 
for the filtered flame front location in the corrugated flamelets regime by using similar 
arguments as given by Oberlack et al. (2001). The resulting G-equation will be extended 
to the thin reaction zones regime in the following section. 

A parametric representation of the fleone surface J" can be given as 

Xf = Xf{X,n,t), (2.1) 
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where Xf is the flame front location, and A and /x are curvilinear coordinates along the 
flame surface forming an orthogonal coordinate system moving with the flame front. 
Considering a point PQ on the flame surface, which is given by the coordinates (Ao,/zo), 
Xf{Xo,fj,Q,t) describes the temporal development of the location of the point PQ in phys- 
ical space as function of time t. The coordinates A and // are hence parameters of the 
function Xf and wiU in the following be written as A = (^). 

For a given set of parameters A, a spatial filter 7i can then be defined as 

W (A - A') = I '^^^^'   '^ 1"^^ (^) " ""f (^'^ I - ^    , (2.2) 
^ '      \ 0, otherwise 

where A is the filter width and a(A) is a normalization factor that is determined by the 
normalization condition 

I- n{A- A') dA' = l. (2.3) 

.F 

This filter function is substantially different from the conventionally applied filter kernels 
for scalar quantities. Since the flame is only defined on a surface, the filter also has to move 
along this surface and cannot be used at an arbitrary point in space. The coordinates 
used in the filter function are therefore not spatial, but flame surface coordinates. Then, 
a spatial filtering operation for the flame front location can be defined as 

Xf (A, t)= fxf (A', t) W (A - A') dA'. (2.4) 

This filtering operation should be described in more detail for clarity. The surface coor- 
dinates A are defined along the instantaneous flame surface. To obtain the filtered front 
location, for each point a;/(A) on the instantaneous flame surface, the filtering operation 
Eq. (2.4) yields a corresponding mean flame front location x/(A). These locations define 
the filtered flame front position. Note, that although Xf is expressed as a function of A, 
these parameters are still defined through the unfiltered front. 

Applying the filter operation to Eq. (1.3) leads to 

dxf     ^       ,„ „, 
-^ = v + SLn, (2.5) 

where the conditionally filtered flow velocity and propagation speed are given by 

v{A,t)= fv (A', t)n{A- A') dA'. (2.6) 

and 

s£h (A, t)= f SL (A', t) n (A', f) W (A - A') dA'. (2.7) 

To obtain an equation for the filtered flame front location, the imphcit representation 
of the flltered flame surface, given as 

G{x,t) = Go, (2.8) 

is differentiated and the displacement speed of G appearing in this equation is associated 
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with the filtered displacement speed of the unfiltered front. This results in 

dG     dxf   _, jL     „ ,_ „» 

Note that the'^-quantities are a direct result of the filtering operation Eq. (2.4), whereas 
G is just the level-set representation of the filtered flame front location. Therefore, the 
filtered flame front is not yet defined by Eq. (2.8). Indeed, this equation and its diflfer- 
entiated form could describe any iso-surface. Only by choosing the propagation speed of 
this surfeice equal to the filtered propagation speed from Eq. (2.5), this surface is identi- 
fied with the filtered flame front location. Introducing Eq. (2.5) into Eq. (2.9) yields the 
G-equation for the mean flame front location as 

dG 
-3- + u-VG = -sIn-VG. (2.10) 
at 

As proposed by Oberlack et al. (2001), the propagation term defined in Eq. (2.7) can be 
modeled by the turbulent burning velocity, here the sub-grid burning velocity, ST, and 
the gradient of the resolved G-field as 

  VG 
SLn = STn = -STT^y (2.11) 

where n is the normal vector of the filtered flame front position 

^ = -|^. (2.12) 

Note that according to the definition of Go the conditional velocity is either the filtered 
velocity in the immediate unburned or burned gases, which will be denoted by «„ and Vb, 
respectively. Similarly, the turbulent burning velocity has to be defined with respect to 
the unburned or burned gases, denoted by ST,M and ST^. With these notations, depending 
on the definition of Go, Eq. (2.10) can be written as either 

^ + 9„.VG = sr,u|VG| (2.13) 

or 

— + Vb-V6 = ST,b I VG| . (2.14) 

The evolution of the filtered flame front location can be described by either one of the 
Eqs. (2.13) and (2.14). To solve these equations, models for the sub-filter burning velocity 
and the flame front conditioned, filtered velocity have to be provided. The latter quantity 
has to be modeled in terms of the Favre-filtered velocities, which are known from the 
solution of the Favre-filtered momentum equations. Models for these quantities will be 
provided in subsequent sections. 

3. G-equation for the filtered flame location valid in the corrugated flamelets 
and the thin reaction zones regime 

In the derivation for the instantaneous G-equation for the thin reaction zones regime, 
Peters (2000) starts from the instantaneous temperature equation and develops a level-set 
equation for a temperature iso-surface given by T{x, t) =T°, where T° is the inner layer 
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temperature. The expression for the propagation speed is similar to Eq. (1.3), where, 
following Gibson (1968), the displacement speed, Sd, can be written as 

Here, p is the density, DT is the temperature diffusivity, and UT is the chemical source 
term. With the temperatvire iso-surface normal vector UT — — Vr/|VT|, the transport 
term in Eq. (3.1) can be expressed by its components normal and tangential to the T° 
surface and the displacement speed becomes 

.. = - {Dr^.nrh^^o + (^-^r(pI|r|Vr|)-u;^^|^^^^ ^ ^^ ^ ^^^ ^ ^^^      ^3 2^ 

Peters et al. (1998) have shown that (s„ + 5r)i which for an unstrained premixed flame is 
the laminar burning velocity, is not significantly changed by turbulence, and therefore, in 
the thin reaction zones regime, is small compared with the contribution from curvature 
Sii- Since the temperature iso-surface T = T° will be described by G = Go, SK can be 
written as 

s, = -DTV-TI^DTV- (||^) . (3.3) 

The combined displacement velocity valid in the corrugated flamelets and the thin 
reaction zones regime is given by an expression similar to Eq. (1.3), but with the laminar 
burning velocity SL replaced by SL+SK- Filtering this expression with the filter operation 
given by Eq. (2.4) leads to 

^ = t? + (si + s«)n. (3.4) 

Introducing Eq. (3.4) into Eq. (2.9) leads to the G-equation valid for the corrugated 
flamelets and the thin reaction zones regime 

art ^.--""^—^_ 
^ + v-VG = -{sL + s,)n-VG. (3.5) 
ot 

As in Eq. (2.11), the propagation term can again be modeled by a turbulent burning 
velocity and the normal vector of the mean flame front position as 

--^    ""^^ VG 
(5X, + SK) n = srn =-ST 7=^ • (3.6) 

It is important to note that in the modeling of the turbulent burning velocity, the efiect of 
curvature, most important in the small scale turbulence regime, and the effect of laminar 
flame propagation, important in the large scale turbulence regime, have to be considered. 
It is also interesting to note that in the present derivation of the G-equation, the term 
proportional to the eddy diffusivity and the curvature of the mean field, which in Peters 
(2000) and Pitsch & Duchamp de Lageneste (2002) arises from the scalar flux term in 
the thin reaction zones regime, does not appear. This term always leads to a stabilization 
of the mean flame front and hence, to a decrease in the resolved scale tvirbulent burning 
velocity. 
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4. Model for the conditionally filtered flow velocity 
A consistency requirement for the conditional velocities model is imposed by the fact 

that Eqs. (2.13) and (2.14) are equivalent. After applying a model for tJ„ in Eq. (2.13) 
and Vb in Eq. (2.14), these still have to have the same solution. In the following, we will 
therefore first develop a model for the conditional velocities, and then show that applying 
the model to both equations leads to equivalent formulations. 

The conditional velocity v is the velocity at the flame front, weighted with the filter 
function H and averaged over the entire flame surface within the filter volume. Physically, 
this averaged velocity, as it appears in the convection term in Eq. (2.10), leads to the 
convection of the entire sub-filter flame surface. Hence, it is important only to capture 
the large-scale velocity motion in the model for the conditional velocities, and not the 
small scale velocity fluctuations, which only lead to sub-grid flame wrinkling, but not to 
convection on the resolved scales. Then, the local unfiJtered velocities can be assumed 
to be constant in the burned and the unburned part of the sub-filter volume. These 
velocities are then equal to the respective conditional velocities. This can be written as 

if G < Go 
,^x _ I   wu    if G = Go and Go defined in the unburned ,     . 

^^   ■' ~ 1   «.    if G = Go and GQ defined in the burned ^    ' 
if G > Go 

where it has to be distinguished, whether Go is defined to be in the unburned or the 
burned mixture. The unconditional Favre-filtered velocity can then be expressed by 

oo Go oo 

pv= J fyv{G)P{G)dG = p„u„ j P{G)dG + pbVb f P{G)dG, (4.2) 
-oo -oo Go 

where P{G) is the pdf of finding a particular value of G. Introducing the probabifity of 
finding burned mixture as 

oo 

Pb=fp{G)dG, (4.3) 

Go 

the unconditional velocity can be written as 

"pv = PuVu{l - Pb) + PbVbPb • (4.4) 

Similarly, the unconditionally filtered density can be derived as 

p = Pu{l-Pb) + PbPb- (4.5) 

To express Vb by «„, we will use the jump condition for the mass balance across the 
mean flame interface, given by 

Pun . (vu - ^) = Pbn ■ (vb - ^) . (4.6) 

The displacement speed can be expressed by Eqs. (3.4) and (3.6), where the choice of the 
conditional velocity and the burning velocity depend on the location of Go with respect 
to the flame. If Go is defined to be in the unburned mixture, «„ and ST,U have to be 
used. However, if Go is in the burned gases, then the appropriate values are given by Vb 
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and ST,b- For the velocity jump across the flame front this results in 

,^ ^   \ Pu Pb (A   '7\ 
n-{vu- Vb) = ST,u , (4.7) 

Pb 

if Go is defined to be in the unburned mixture, and 

fi.(y^-V,) = ^^^^^ST,b, (4.8) 
Pu 

if Go is in the burned gases. Introducing Eqs. (4.7) and (4.8) into Eq. (4.4) results in 
expressions for the conditional velocities in terms of the unconditional velocities as 

.   ^       ,   ~ ,  Pu — Pb /. nx 
nvy,=n-v + ■—::::—ST,uPb (4.9) 

P 

and 

n-Vb = nv ^—ST,b (1 - Pb) ■ (4.10) 

In order to make use of these relations in the G-equation given by Eqs. (2.13) and 
(2.14), we first split the convection term into a flame normal and a flame tangential part. 
Since the flame tangential part only leads to a parallel translation of the flame firont and 
has no influence on the flame propagation, it can be neglected. The convection term from 
Eq. (2.13), for instance, can then be written as 

v^.VG = {n- Vu) n-VG. (4.11) 

After introducing Eq. (4.9) into the normal convection term, only the normal component 
of the unconditional velocity appears, which can again be complemented by the tangential 
part without changing the solution, which leads to 

^ + v.VG = ST,u I VG| (l + ^^Pb) (4.12) 

and 

^ + « . VG = ST,b I VG| (l - ^^ (1 - pb)^ . (4.13) 

With Eq. (4.5), the equations for the filtered flame front position can be written as 

and 

^ +1; • VG = ^ST,u I VGl (4.14) 
at p       '      ' 

^+t;.VG=^sr,6|VG|. (4.15) 
at p    ' '     ' 

It is easily seen that these equations satisfy some important limits. If Eq. (4.14) is 
evaluated in the unbiurned mixture, then v = Vu and p = pu- Hence, Eq. (2.13) is 
recovered. If, on the other hand, this equation is evaluated in the burned gases, v = Vb, 
"p = Pb, and, since the mass conservation through the flame requires 

PuST,u = PbST,b , (4.16) 

the right hand side goes to sr,6|VG|. Therefore, in the burned gases, Eq. (2.14) is 
recovered. By using Eq. (4.16), it can also be shown easily that Eqs. (4.14) and (4.15) 
are equivalent. 
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filtered flame 
fi'ont position 

FIGURE 1. Instantaneous Eind filtered flame front position 

5. Equation for the sub-filter flame brush thickness 

We now want to derive an equation for the length-scale of the sub-filter flame front 
fluctuations I, which might be associated with the sub-filter flame brush thickness. This 
equation will then be used to derive a model for the turbulent burning velocity. The 
flame front fluctuation I will here be defined as the distance of the instantaneous flame 
front to the filtered flame front in the direction normal to the filtered flame surface, as 
indicated in Fig. 1. Then, I is simply the distance between the points Xf and Xf given 
by 

1 = \xf-Xf\ . (5.1) 

For a given point Xf on the filtered flame surface, the appropriate location on the in- 
stantaneous surface is then defined with the filtered front normal vector at Xf as 

ln = Xf —Xf. (5.2) 

It is easy to see that this definition of the length scale satisfies the important criterion 
that I tends to zero, if the flame front wrinkMng is completely resolved, since this impUes 
that Xf and Xf are the same. Other choices could be made to define the length-scale of 
the sub-filter flame front wrinkhng. For instance, the length-scale could be evaluated at 
constant value of A as i = a!/(A) — x/(A), which would correspond to the definition used 
in Oberlack et al. (2001). However, this definition does not necessarily tend to zero, if 
the flame is resolved. 

Similar to the G-variance equation given in Peters (2000), the equation for flame front 
fluctuations has a production term, active on the large scales, and two dissipation terms, 
the kinematic restoration term, important in the corrugated fleimelets regime, and the 
scalar dissipation term, important in the thin reaction zones regime. The length scale 
equation should therefore actually be derived and modeled separately in each of these 
regimes and combined subsequently. Here, for brevity, only the combined equation, vaHd 
in both regimes, will be derived. However, the modeUng of each dissipation term will be 
done in the Umit, where only this particular term is important. 

Differentiating Eq. (5.2) and using Eq. (3.4) £ind the corresponding unfiJtered equation, 
an expression for I can be derived as 

dl fi     dxf — Xf ^     
-j- = ——r.—- =v-v-\- Sin - Sin + s^n - SKU . (5.3) 

The equation for the length scale of the sub-filter flame firont fluctuations can then be 
obtained by multiplying Eq. (5.3) by I n and applying the filtering operation, given by 
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Eq. (2.4). This leads to 

■— = 2^^' + 2n • lisLTi)' + In ■ lis^n)', (5.4) 
at 

where the sub-filter velocity fluctuation has been introduced as v' = v — v and the 
turbulent burning velocity fluctuations as (sin)' = s^n — s£h and (SKTI)' = SKTI - s^. 
Since P is a quantity that is defined at the filtered flame front only, the rate of change 
can be described in an Eulerian frame of reference such that 

which, using Eq. (2.5), leads to 

—- + (« + sEh) • VP = IfTlv' + 2n • l{sLn)' + 2n • l{s^n)'. (5.6) 
at 

The convective transport term can again be modeled as described earlier using Eqs. (2.11) 
and (4.9), which leads to 

dP 
9r+ (v + ^sr" ) • VZ2 = 2n • Iv' + 2n ■ /(sx,n)' + 2n ■ l{s^ny. (5.7) 

In Eq. (5.7), the terms on the left hand side describe the rate of change and the transport 
of the length scale due to the flame displacement. The first term on the right hand side 
describes the production of flame firont wrinkling due to the turbulence, whereas the 
second and third terms on the right hand side are the flame surface dissipation due to 
flame propagation and diff^usive curvature effects, respectively. 

To model the production term in Eq. (5.7), we have to consider the scalar flux term 

n-lv\ which would typically be expressed using a gradient transport assumption, in- 
volving a turbulent eddy viscosity and the spatial gradient of the scalar. However, since 
the flame front fluctuation I is defined at the mean flame front position only, spatial gra- 
dients of this quantity are not defined. The length scale I will therefore first be related 
to fluctuations of the scalar field G, which for small I or constant |VG| around the flame 
front can be written as 

C 
I = —^ . (5.8) 

Note that constant |VG| can be required, because the definition of the G-field away from 
G = Go is arbitrary, and that / is certainly still independent of the definition of this field. 
The scalar flux term then becomes 

where the right hand side has been obtained by invoking a gradient transport assumption 
for G. With the definition of the mean flame front normal vector, Eq. (2.12), the turbulent 
production term can then be modeled by 

^^' == Dt,G ■ (5.10) 

Dt,a would generally be called the eddy diffusivity of G. This is misleading, since the 
scalar G is non-diffusive. However, Dt^c appears not in a diffusion type term in the 
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modeled form of the length scale equation, but as a source term, which, since a turbulent 
diffusivity really describes turbulent transport rather than diffusion, accounts for the 
production of flame surface through turbulent mixing. This also impUes that Dt,G has no 
contribution from a molecular diffusion coefficient. It should therefore be called turbulent 
transport coefficient rather than eddy diffusivity. Since the definition of G outside G = Go 
is arbitrary, this coefficient cannot be simply determined using the dynamic procedure for 
scalar quantities as proposed by Moin et al. (1991). Instead, a constant Schmidt number 
assumption with a Smagorinsky-type model for the sub-filter eddy viscosity will be used 
for Dt,Gf which results in 

A,G = -s^, (5.11) 

where C,/A is a sub-filter length-scale given by the filter width A and the Smagorinsky 
coefficient C^, the latter of which is determined by a dynamic model as described by 
Moin et al. (1991). According to Pitsch & Steiner (2000), the Schmidt number has been 
chosen to be Sct,G = 0-5. 

Since both dissipation terms act on the small scales, the scaling relations for these terms 
provided by Peters (1999) in a Reynolds averaged context can also be applied here. In the 
corrugated flamelets regime, the kinematic restoration term is the dominant dissipation 
term. This term should be independent of small scale quantities such as the laminar 
burning velocity, but scales with the mean propagation term and can be expressed as 

n • l{sLn)' = C2C„A n • siji = -C2C„A sy , (5.12) 

where the turbulent burning velocity has been introduced using Eq. (2.11). 
Similarly, also the scalar dissipation term, dominant in the thin reaction zones regime, 

is assumed to scale with the respective mean propagation term. Since a dissipation term 
can be written independently of the large scales, the missing length scale is obtained 
from the small scale quantities and it follows 

n • USKUY = ci—{n- s^f = -C3 —ST . (5.13) 
Si SL 

Introducing Eqs. (5.10), (5.12), and (5.13) into Eq. (5.7), and assuming that production 
equals dissipation in that equation, an expression for the turbulent burning velocity can 
be obtained as 

Dt,G - C2C^AST-C3—sl = 0. (5.14) 
SL 

This leads to 

SL 26iSct_G IF 
(5.15) 

Here, the laminar burning velocity has been added to satisfy the lanainar limit. The 
constants c^ and C3 have been determined such that Eq. (5.15) results for A/lp —* 0 in 
Damkohler's small-scale limit 

ST -SL        I   ''A 
= h-^, (5.16) 

SL SL 
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and for A/lp —> oo in the large-scale limit 

ST — SL     ,    /A /'c17■^ 

SL V -D 

The resulting expressions for the constants are C2 = l/(6iSct,G) and cs = I/63, where 
the constants 61 and 63 have been taken from Peters (2000) to be 61 = 2.0 and 63 — 1.0. 

Finally, in light of these results, the scaling used in the modeling of the dissipation 
terms in the length scale equation should be discussed. To derive the models given in 
Eqs. (5.12) and (5.13), dimensional arguments have been used, which, if used differently, 
covild also have led to different results. In particular, for the kinematic restoration, a linear 
dependence of the propagation term has been assumed, while for the scalar dissipation 
term a quadratic dependence is used. As an example for a different scaling possibility, the 
latter could also have been expressed as Unearly dependent on the propagation term times 
the small scale length scale Ip. Such a scaling has been used in Pitsch & Duchamp de 
Lageneste (2002), which then led to a similar, but different expression for the turbulent 
burning velocity. The quadratic relation, which for the scaling used in this study is 
given by Eq. (5.14), has then no Unear term, and can be solved more easily. However, the 
choice of the particular scaling used here and also in Peters (2000) is motivated by results 
from direct numerical simulations by Wenzel (2000), who studied the evolution of the 
G-equation in forced isotropic turbulence. Unfortunately, the scaling of the dissipation 
terms in the length scale equation has not been investigated, but the scaling of the 
corresponding terms in an equation for the flame surface area ratio a = |VG| has been 
given. It is found that the kinematic restoration term depends quadratically, the scalar 
dissipation rate cubicly on a. These dependencies can be translated to the length scale 

equation. Since CT ~ G', it follows that ^^ ~ ^, which, using Eq. (5.8), leads to 

dp = ^—da. This shows that compared with the transport equation for a given in 
Peters (2000), in the equation for Z^, given by Eq. (5.7), the power of a in the dissipation 
terms should be decreased by one. This results in the scaling employed in Eqs. (5.12) 
and (5.13), since, using the present filtering procedure, a appears in form of the normal 
vector. 

6. Conclusions and future work 

In the present paper a consistent formulation of the G-equation approach for LES has 
been developed. It has been discussed that the instantaneous unfiltered G-equation is 
valid only at the instantaneous flame front location. In a filtering procedure, applied to 
derive the appropriate LES equation, only states on the instantaneous unfiltered flame 
surface can hence be considered. A new filter kernel has been provided here that averages 
only states along the flame surface. The filter has been used to derive the G-equation for 
the filtered flame front location. This equation has two unclosed terms involving a flame 
front conditionally averaged flow velocity and a turbulent bmming velocity. A model 
for the conditional velocity is derived expressing this quantity in terms of the Favre- 
filtered flow velocity, which is usually known from the flow solver. This model leads to 
the appearance of a density ratio in the propagation term of the G-equation. Due to 
the application of the new filtering procedure, also a propagation term proportional to 
the curvature of the mean front does not appear. This is an important difference to the 
mean G-equation given by Pitsch & Duchamp de Lageneste (2002), since the term has 
a stabilizing effect on the flame front and will therefore lead to a decreased resolved 
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turbulent burning velocity. An equation for the length-scale of the sub-filter flame front 
wrinkling is derived and leads to a model for the turbulent burning velocity. In the 
future, we will validate the present formulation in LES of turbulent premixed combustion 
experiments and assess the importance of the differences in the present formulation. Also, 
having provided a sound filtering procedure, dynamic models for the txurbulent burning 
velocity can now be developed. 
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A numerical scheme for the large-eddy simulation 
of turbulent combustion using a level-set method 

By Laurent Duchamp de Lageneste AND Heinz Pitsch 

1. Introduction 

In premixed combustion, fuel and air are fully mixed before entering the combustion 
chamber. When a heat source is introduced (spark or pilot flame), combustion takes 
place in the form of a thin front propagating through the mixture. If turbulence levels 
are such that the reaction zone is still smaller than the Kolmogorov scale, the flame is in 
the flamelet regime (Peters 2000) and can be viewed as a thin interface separating two 
different states thus making it a suitable candidate for the use of a level-set approach. 

The level-set methodology has been used in recent years to describe the dynamic evo- 
lution of fronts and discontinuities. Comprehensive overviews can be found in Sethian 
(1996) or Osher & Fedkiw (2002), including different possible numerical approaches and 
examples of applications to problems ranging from multiphase flows to image reconstruc- 
tion. 

The first application of this approach to the description of reacting flows is due to 
Williams (1985) who proposed an equation for the propagation of a flame front separating 
burnt from unburnt gases: the G-equation. This equation describes the evolution of a 
continuous field G of which a particular iso-level GQ gives the location of the reaction 
front. This Go level is advected with the external velocity field U, while propagating 
normally to itself with the laminar burning velocity sx,. The G-equation is then: 

^-FU.VG = Si|VG|. (1.1) 

Once the position of the front is defined, one can write jump relations through the 
front to take gas expansion due to heat release into account, and compute all the ther- 
mochemical quantities simply from the position relative to the flame front. 

Although this approach is simple and requires considerably less computational re- 
sources than solving the full system of conservation equations for the reacting species 
with detailed chemistry, the numerical treatment of (1.1) is generally not trivial. One 
difficulty arise in particular from the fact that (1.1) is strictly valid only at the particular 
iso-surface Go as can be seen by considering that the laminar burning velocity SL can 
only be defined at Go. An immediate consequence is that away from the front, the values 
of G are arbitrary and that the ansatz chosen should not affect the results. Theoretical 
considerations concerning the derivation of proper averaging procedures which respect 
the particular symmetries of the G-equation are discussed in Oberlack et al. (2001). 

A common practice is to define the G field as the signed distance to the flame front 
(Sethian 1996). Since (1.1) will not in general conserve G as a distance as the calculation 
progresses, a specific procedure has to be implemented to re-assign the value of the signed 
distance function to points away from the front after each time step. 

The numerical methods to solve the level-set equation can therefore be divided in two 
major steps: 
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• time-advance the level-set equation, 
• reinitialize G to a distance function. 
Because of the necessary use of upwind differencing at each stage, level-set methods 

have a tendency to lose surface in under-resolved regions of the flow. For apphcations 
in the RANS context (Peters 2000; Herrmann 2000) the consequences of this drawback 
can be expected to be small because of the relative smoothness of the mean flame front. 
However, the impact of these inaccuracies will grow in LES applications, where the effect 
of small-scale wrinkling must be retained. Attempts to improve surface conservation 
have led to various techniques; see Sethian (1996), Sussman & Fatemi (1999), Russo & 
Smereka (2000) or Peng et al. (1999). We will show that it is necessary to take these 
improvements into account if one is considering applying the level-set methodology to 
the LES of turbulent premixed combustion. 

In this paper, we will first present the numerical methods used to advance the level-set 
equation in the context of LES of turbulent premixed combustion. We will then focus on 
some of the potential problems associated particularly with the reinitialization procedure. 
A detailed description of this procedure will be given, as well as some of the necessary 
modifications of the base algorithm that have been introduced in order to improve surface 
conservation properties. Finally, an example of application of the resulting method to the 
simulation of a laminar Bunsen flame will be presented. 

2. Numerical treatment of the level-set approach for premixed combustion 

In the laminar case, the G-equation flamelet model proposed by Williams (1985) yields 
the following equation describing the propagation of an instantaneous flame surface: 

^ + U.VG = Si|VG|, (2.1) 

where U is the convection velocity, and SL is the laminar burning velocity. If curvature 
effects are taken into account, an additional curvature correction term appears on the 
right-hand side of (2.1) as described by Pelce & Clavin (1982) and Matalon & Matkowsky 
(1982): 

dG 
— + V-VG = SL\'7G\-DMK\VG\, (2.2) 

where DM is the Markstein diffusivity and K the curvature. 
In the LES framework, Pitsch & Duchamp de Lageneste (2002) derived the following 

equation for the motion of the filtered Go level: 

p^ + pV-VG = ^ (ST|VG| - DtK\VG\), (2.3) 

where U is the filtered convective velocity, ST is the modeled turbulent burning velocity 
and K is the curvature of the filtered firont. Here, a model for the conditionally filtered 
velocity derived by Pitsch in a companion article in the present volume has been intro- 
duced. In this form, (2.3) is a Hamilton-Jacobi equation with an additional parabolic 
curvature term. 

While solutions of this equation for a given initial condition are generally not unique, 
Crandall & Lions (1983) showed that a unique viscosity solution can be obtained through 
the use of the appropriate monotone scheme. As strictly-monotone schemes are Hmited 
to first-order accuracy and are therefore too dissipative, Osher & Sethian (1988) have 
introduced a class of high-order upwind schemes for the Hamilton-Jacobi equation based 
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on the ENO polynomial reconstruction procedure previously developed by Harten et al. 
(1987) and extended by Shu & Osher (1989) in the context of conservation laws. 

Here, additional difficulties can arise from local mesh refinement and the use of cyhn- 
drical coordinates. In particular, the expficit numerical treatment of the advective term 
would lead to unacceptably low timestep restrictions in refined regions and close to the 
centerline. Thus the use of an impUcit scheme to treat at least parts of the advective 
terms is necessary. 

Using mass conservation, the advective part can be rewritten in the more advantageous 
conservative form 

^ + V • ipVG) = PUSTNG] - pDtK\VG\. (2.4) 
ot 

The appropriate part of the convective terms is then treated using a semi-implicit 
version of the QUICK scheme described by AkselvoU (1996) and Pierce & Moin (2001) 
to alleviate the CFL restriction. 

The propagation term appearing on the right-hand side of (2.4) is then discretized using 
a third-order-accurate version of the ENO scheme described by Shu & Osher (1989). 

The remaining parabolic cmrvature term is treated accordingly, using central differ- 
ences. 

We will now describe the discretization of the propagation and curvature terms in 
more detail. The reader is referred to AkselvoU (1996) and Pierce & Moin (2001) for a 
thorough description of the semi-imphcit scheme used to discretize the convective terms. 

2.1. Discretization of the propagation term 

Various schemes have been derived for the numerical treatment of the propagation term 
appearing in (2.4). The two most popular variants are the Engquist-Osher entropy- 
satisfying scheme and the Godunov scheme. 

Our objective is to discretize the term ST ■ |VG| appearing in (2.4), rewritten in the 
following form: 

ST ■ |VG| = max(sr, 0)V+ -I- min(sT, 0)V-. (2.5) 

The Engquist-Osher scheme to obtain V"*" and V~ would then read 

V+ - [max(I»!:i:^0)2 + mm(I>^i•^0)2 

+ max{lfj^, 0)2 + min{iy^^, Qf (2.6) 

+ maxiD'lf, 0)2 + mm(D^i•^ 0)^] ^ 

and 

V- = [max(D^i'^0)2^-mm(D!:^^^0)2 

+ max(I>^^'^ 0)2 + mm(D!lf, 0)2 (2.7) 

+ max(D^i■^ 0)2 + m^n(£)!:i'^ 0)2]' 

while the Godunov scheme is given by: 

11/2 

,1/2 

V+ = max{max{Di:^^'', 0)2, m^n(D^i•^ 0)2) 

+ max{max{D]:'^'', 0)2, mm(I>^^/, 0)2) (2.8) 
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+ maa;(max(D!:^'^0)^mm(D^i■^0)2)]^^^ , 

and 

V- = [max(max(I>^i*,0)2,mm(Z)!li'*,0)2) 

+ maa;(maa;(I>^^'*,0)2,mm(D!:^'*,0)2) (2.9) 

where D^^'^j^^^ ^Je third-order ENO approximations to the gradient of G in each di- 
rection. 

Although both methods should give equivalent results, the Godunov scheme is gener- 
ally considered to be slightly less dissipative near sonic points than the Engquist-Osher 
scheme, and will be used to discretize the propagation term. 

2.2. Discretization of the curvature term 
The curvature term, being parabolic in nature, is accordingly discretized using second- 
order central differencing (Sethian 1996). 

Introducing the mean curvature as 

VG 
«M = V • NG = -V • =^, (2.10) 

where NQ = -VG/|VG| is the normal to each iso-level of G, the term A«|VG| in (2.3) 
is discretized as 

A«|VGi = A^i^'* [(Dj'i''^)' + {D^'"? + iD'J''f]'/' , (2.11) 

where «]^' is a central-difference approximation of the expression given in (2.10 and 
Dcxlcy,cz is the second-order central-difference approximation of the components of the 
gradient of G in each direction. 

3. Reinitialization 

In problems such as turbulent combustion, it is impossible to maintain the level-set 
function as a signed distance from the moving Go smrface because of the turbulent nature 
of the advective flow field. Flat or steep regions develop as the interface moves, rendering 
computation at these plaxies inaccurate. It is therefore necessary to introduce a procedure 
that will reset the G-field to the signed distance from Go in a pre-defined neighborhood 
of GQ. Such a procedure is called reinitialization and several variants have been proposed 
by Sethian (1996), Sussman & Fatemi (1999), Russo & Smereka (2000) and Peng et al. 
(1999). 

In LES, where the effects of small-scale motion on the front must be retained, special 
attention must be paid to using a procedure that preserves the position of the Go-surface 
accurately. 

3.1. General procedure 
In order to reset the G field to the signed distance from the Go smrface, the following 
equation has to be solved to a steady state: 

4>Q = G{x,0) (3.1) 
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^ = 5(,Ao)(l-|V.^i), (3-2) 

where S{(j>o) is a smoothed sign function defined by 

^<"-^fl?- '^■^' 
It is possible to rewrite (3.2) as an advection equation, 

^+wV<^ = S'(<^o) (3-4) 

w = 5(^o)i^. (3.5) 

A suitable numerical scheme can then be derived from those developed for solving the 
advection equation. 

We use a third-order ENO scheme presented in Shu & Osher (1989) or Sussman & 
Fatemi (1999) for the spatial derivatives, while time advancement is done using the 
corresponding third-order optimal Runge-Kutta scheme. 

One then obtains the following Godunov scheme for the reinitialization (expressed for 
a first-order time discretization, for simplicity): 

<l>o = G{x,0) (3.6) 

^n+i = ^n ^ ^^ [maa;(5(.^o),0)V+ + mm(5(<^o),0)V-] , (3.7) 

with 

V+ = l w,*^ n\2 »„,-r,cn»-J>*= max{max{Dy^\0y, mm(I>^r. 0)=^) 

and 

+ max{max{Dt'f,Of, min{DX'f, Of) (3.8) 
nl/2 

+ maa;(maa;(J[)!:i•^0)^mm(D^i•^0)2) 

V- = 1 - [max(maa;(D^i:^0)^mm(D!li:^0)2) 

+ max{max{Di(^^'', 0)^, mm(I>!:^•^ 0)^) (3.9) 

+ max(max(£>ii'^0)^mm(D!:i•^0)2)]^^^ , 

where D±''j'^±y j.^ are third-order ENO approximations of the components of the gradient 
of ^ in each direction. 

Once a stationary solution is obtained for 4>, G is simply replaced by 0. 

3.2. Reinitialization in presence of high or low gradients 

3.2.1.  General procedure 

When advected by a turbulent velocity field, regions of high or low gradient are likely 
to develop around the Go-surface. When the procedure outlined above is applied, Peng 
et al. (1999) have shown that large straying of the Go surface may occur, especially in 
high gradient regions, while convergence in regions of low gradients tends to be slow. 

Peng et al. (1999) proposed a modification of this method, designed to avoid these 
drawbacks by taking the local value of the gradient into account in smoothing of the sign 
function. 
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In this variant, the sign function is now given by: 

As noted by Osher & Fedkiw (2002), for this procedure to work well it is necessary to 
update S{q) continuously as the calculation progresses. 

An illustration of the improvements achieved using this formulation is given in the 
next section. 

3.2.2.  Validation: one time reinitialization of a distorted field 

To assess the ability of this method to conserve the initial location of the Go level if 
regions of high or low gradient are present, we compare the results of the reinitialization 
of the ^0 field (Russo &c Smereka 2000), 

<l>o = f{x,y) fl 4-^-1 
A2 "^ £2 (3.11) 

to a signed distance function. 
Here, f{x,y) = e + (re - xo)^ + (y - yo)^, with A = 4, B = 2,€ = 0.1, XQ = 3.5, and 

1/0 = 2. Hence, the <^o = 0 surface is an eUipse and is surrounded by both high and low 
gradients (see figure 1). 

The computational domain is fi = [-5,5] x [-5,5] and a coarse, 50 x 50, grid is used. 
Results of the reinitialization using the sign function defined in (3.3) are presented in 

figure 1. Reinitialization across the (^o = 0 surface results in undesired perturbations that 
can be considerable in regions of larger gradients. 

In figure 2, results using the sign function defined by (3.10 show that straying of the 
^0 = 0 surface is avoided in the high-gradient zone. 

Another positive side-effect of this modification can be observed in low-gradient regions 
where the modification of the sign function leads to faster convergence of the procedure. 
This is particularly apparent in the comparison of the results obtained in the upper-right 
corner region after ten iterations with both methods. 

3.3. Enforcing volume conservation 

The procedure outlined above is a third-order space- and time-accurate method to achieve 
reinitialization of the G-field. However, as pointed out by Sussman & Fatemi (1999), 
because of its upwind nature, its direct application may lead to unwanted dissipation 
of the Go-surface. Furthermore, the reinitiaUzation error is likely to accumulate as the 
number of time steps grows. 

This effect can be expected to be even more pronounced when G exhibits regions of 
locally-large curvature like small wrinkles of the flame surface. 

Sussman & Fatemi (1999) proposed a constraint that prevents straying of the Go 
surface, and has the additional advantage that the error introduced is independent of the 
number of time steps required to reinitialize the G-field. 

Noting that the volume enclosed in the GQ smrface can be evaluated by 

= fs{G)dy (3.12) 

where 5(G) is the smoothed approximation of the sign function appearing in (3.2), volume 
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0 iterations 

25 iterations 

10 iterations 

50 iterations! 

FIGURE 1. One time reinitialization with sign function defined by (3.3) on a 50 x 50 grid. Prom 
left to right and top to bottom, reinitialized field after 0, 10, 25 and 50 iterations. The Go = 0 
level is displayed as a bold line. 

conservation is enforced by requiring that 

dt f S{G)dx = 0. (3.13) 

By introducing the operator L{<l)o, (j>) - S{<j>o){l - \'^4>\), the reinitialization procedure 
becomes 

^=L{4>o,<l>) + Xf {<!>), (3.14) 

where A is obtained by requiring that 

dt J S{G) = j S'i(t>)^ = I S'{cl>){L{<t>o, <!>) + Xfm = 0. (3.15) 

Taking /(<^) = S''(^)|V^| leads to 

-JS'{cl>)Lict>o,<l>) .3 16) 
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0 iterations 

25 iterations 50 iterations 

FIGURE 2. One time reinitialization with sign function defined by (3.10) on a 50 x 50 grid. Prom 
left to right and top to bottom, reinitialized field after 0, 10, 25 and 50 iterations. The Go = 0 
level is displayed as a bold line. 

with 

S'iq) 
Ax2 

(3.17) 
[g2 + Ax2]5 

This leads to the new procedure: 
(a) Solve (t>n+i = <f>n + dtL{4>o,<l>) using the same third-order ENO scheme described 

in section 3.1. 
(6) Solve 4>n+i = <t>n+i + dt\S'{4>a)\y4>o\ to get the constrained solution of the reini- 

tialization sub-step where the terms S'{4>), L(^o,^) and /(<^) appearing in (3.14) and 

(3.16) are discretized as S'{(j>o), ^"+^~^°, and S'{(J>Q)\V<f>o\ respectively. 
When a Runge-Kutta fractioneJ step method is used for the time discretization, the 

constraint is enforced only once at the end of each time step. All the integrals are evalu- 
ated using a third-order Simpson's rule on a nine-point stencil. 

An illustration of the improvements obtained using this constraint is provided in the 
next section. 

3.3.1. Zalesak's problem 

Zalesak's problem involves the rotation of a notched circle and constitutes a good test 
of how well the reinitialization handles regions of high curvature. 

The domain is a square of 100 x 100, where a notched circle is centered at (25,0). The 
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FIGURE 3. Zalesak's problem after one full revolution on a 100 x 100 grid, reinitialization alone 
(left) and reinitialization with volume-preservation constraint (right). 

velocity field is constant in time and is defined as 

(50 - y)n 
U = 

V 

314 
{x - 50)7r 

314 
The results after one full revolution around the center of rotation are shown in figure 

3. On the left side is the result obtained using reinitialization without the constraint, 
and on the right is the result of the computation using the constraint. Both results are 
compared to the analytical solution. While results of both methods are very good for the 
circular region of the object, important differences are found in the rectangular region 
where the method without constraint is shown to round off the sharp corners, leading to 
a surface loss of nearly 10%. 

Using the constraint, sharp corners are better preserved and surface loss is only about 
2%. 

4. Validation: numerical simulation of a laminar Bunsen flame (Echekki & 
Mungal 1990) 

As a first validation of the numerical scheme we use in the case of reacting flows, we 
present results obtained firom the numerical simulation of a laminar Bunsen flame in this 
section. 

This configuration has been studied experimentally by Echekki & Mungal (1990) and 
consists of a rectangular 2-D slot burner with an exit section width of if = 6.8 mm. The 
exit velocity is UQ = 1.5 m/s and the fuel is a stoichiometric mixture of methane and air. 

The 2-D numerical simulation domain is 6H long and 6H wide. The inlet profile is set 
to be a top-hat profile and a boundary layer is allowed to develop for IH before the flow 
exits the burner. 

Figure 4 shows a comparison of the position of the flame front observed in the experi- 
ment with the results of the simulation, together with a visualization of the streamhnes. 
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FIGURE 4. Laminar Bunsen flame: flame position and streamlines. Experiment (left) and 
simulation (right). 

U 

/   " 
/ O 

H 

FIGURE 5. Laminar Bunsen flame: Temperature (left) and velocity (right). Experimental 
results (symbols) and numerical simulation (solid lines). 

Good agreement is obtained for the flame length as well as for the curvature at the tip of 
the flame, showing that the increase in flame speed due to curvature is well reproduced 
by the simulation. A similar divergence of the streamlines in the burned region of the 
flame can be observed, showing that the simulation also predicts the effect of heat release 
on the flow field correctly. 

Figure 5 shows the evolution of temperature (left) and axial velocity (right) along 
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the axis of symmetry of the flame. The temperature rise along the axis as well as the 
simultaneous velocity increase are well predicted by the simulation until the tip is reached. 
Behind the flame tip however, the temperature in the experimental data drops slowly 
due to radiation, which is neglected in our simulation. The simulation therefore predicts 
nearly-constant temperatiure behind the tip. 

As a consequence, the fast deceleration of the gas downstream of the tip is also under- 
estimated in the simulation. 

5. Conclusion 
In this report, we have presented numerical methods to solve the level-set equation 

for premixed combustion in LES. In particular, we have described the third-order ENO 
scheme used to discretize the normal propagation term as well as the numerical schemes 
used for the remaining terms. 

We have then stressed that the reinitialization procedure used to keep G as a distance 
function is a key factor in the development of an accurate level-set model for LES of 
turbulent premixed combustion. The overall method, including its discretization by an 
higher-order ENO scheme has been introduced. Examples of potential problems generated 
by the application of this algorithm to the case of turbulent combustion have been given. 
Consequently, a first modiflcation of the procedure has been introduced to avoid undesired 
strajdng of the interface due to the creation of regions of low or high gradients due to the 
turbulence. An additional constraint has been implemented in order to enforce volume 
conservation around the flame surface. 

A first validation of the resulting scheme has finally been presented for the case of a 
laminar Bunsen flame, showing reasonable agreement with experimental data. 

Further applications of this method in LES of turbulent premixed flames are reported 
in a companion paper in this volume. 
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On the Role of Quasi-one-dimensional Dissipation 
Layers in Turbulent Scalar Mixing 

By   N. Peters f AND P. Trouillet 

1. Motivation and background 
Ever since Carl Gibson (1968) analyzed the fine scale structure of scalar mixing in 

terms of zero gradient points there has remained the question how these findings can be 
related to mixing models. Existing turbulent mixing models ignore the existence of mini- 
mal points. They are intuitively based on the picture that turbulent mixing is controlled 
by two processes: Stirring of the scalar field by turbulence and subsequent molecular 
diffusion. The general idea is that at sufficiently intense turbulence, stirring is the rate 
determining process and that molecular diffusion just completes the sequence. This fol- 
lows from the hypothesis of a cascade process for scalar mixing, which suggests the use of 
the flow time to model scalar dissipation. This hypothesis is supported by experimental 
and DNS data, but since it recurs essentially to dimensional scaling only, it leaves open 
the question about the precise mechanism by which the interaction between turbulent 
stirring and molecular diffusion takes place. 

There are a number of unresolved questions in scalar mixing. In pdf methods based 
on one-point statistics, for instance, the modeling of molecular mixing represents a chal- 
lenging problem. The challenge lies in the existence of an exact form for the pdf equation 
of the conserved scalar which, however, is not well posed. For the special case of homo- 
geneous turbulence this pdf equation reads (cf. O'Brien, 1980) 

Here Z is the mixtiure fraction which stands for a conserved scalar that is normalized 
such that it varies between 0 < Z < 1, Pz is its probability density function and xz is 
the conditional scalar dissipation rate defined as 

Xz = 2D{{VZ'f\Z) , (1.2) 

where D is the diffusion coefficient and Z' is the mixture fraction fluctuation. In most 
situations in turbulent mixing the definition (1.2) can be replaced by 

Xz = 2D{(yzf\Z) , (1.3) 

because the square of the mean gradient (VZ)^ is small compared to that of the fluctu- 
ating mixture fraction (V2')^. Since xz represents the gradient and therefore requires 
two-point information, it must be modelled. As pointed out by Pope (2000),the assump- 
tion of a constant conditional scalar dissipation rate equal to its mean unconditional 
value in (1.1) leads to an anti-diffusion equation, which is not well-posed, because it 
is non-realizable for arbitrary initial conditions. In most pdf methods the anti-diffusion 
term is therefore replaced by intuitively derived mixing models that do not make use of 
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the exact formulation. Prom a fundamental point of view this is certainly unsatisfactory. 
Hence, the following questions may be posed: Is there an exact formulation for the molec- 
ular mixing process in a mathematically reaHzable form? If there is such a form, would 
this allow to model the process of stirring by the turbulent flow field and the subsequent 
molecular mixing process in a straight forward way? We will answer the first question in 
the affirmative and will outline aspects of the modeling below. 

In the following, we will first derive an equation for the functional form of the scalar 
dissipation rate valid in a local region between a minimum and a maximum point in mix- 
ture fraction space. This equation exhibits analytical unsteady and quasi-steady state 
solutions which correspond in physical speice to local convective-diflfusive structures in 
which unsteady diffusion is enhanced by compressive strain (cf. Ashurst et al., 1987). 
We will call these structures quasi-one-dimensional dissipation layers (QlDL). The dis- 
tribution function of the mixture fraction within these layers is analytically related to 
the local scalar dissipation rate. In search of these QlDLs we will then analyze the scalar 
DNS data of a time-evolving turbulent mixing layer by Rogers and Moser (1994) by 
generating trajectories between minimum and maximum points. Choosing a particular 
quasi-steady solution (the one that corresponds to a sine function in physical space) we 
will then reconstruct the probabihty density function of the mixture fraction Pz and 
the conditional scalar dissipation rate xz using the joint pdf of minimum and maximum 
mixture fraction values of trajectories. Finally, we will derive an exact form for the joint 
distribution function of minimum and maximum mixture fractions, expressed in terms 
of their algebraic mean and their difference. 

2. Theory 
We consider a small local fluid element with initial size of the order of nLo centered 

around its midpoint 0{xo,t) which is convected by the velocity v(Xo, t) within a constant 
density turbulent flow field. We also introduce a local cartesian coordinate system, unit 
vectors i,j,k, aligned with the principal axis of strain {du/dx,dv/dy,dw/dz) and a 
relative coordinate at O(xo,t) to the fluid element as ix,y,z) = X-XQ. The velocity 
field within the small fluid element can be expanded as 

,    .\       ,     .^     . 9u       , dv       , dw ,    , 
v{x,t) = y{y^,t)+i — x + j — y + k-^z. (2.1) 

We denote the most compressive rate of strain as a = —dv/dy and assume that the scalar 
gradient is locally aligned with the most compressive rate of strain. This assumption is 
based on the DNS analysis by Ashurst et al. (1987) who found that "there is an increased 
probability for the scalar gradient to align with the most compressive strain direction 
and that the average gradient is larger when pointing into that direction". Therefore we 
will conduct a one-dimensional analysis based on the scalar equation 

dZ dZ     ^d'^Z 
__ay- = D—^ 

where D is assumed constant. 
By differentiating (2.2) with respect to y and multipljdng it with 2dZ/dy an equation 

for the square of the mixture fraction gradient can be derived 
2 a    /ar7\1 

.ay— = D-^, (2.2) 

d fdzy      d (dzy   ^ fdzy     dzd(^d''z\ 
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Using the one-dimensional form of the scalar dissipation rate as 

XL^-^DidZ/dyf, (2.4) 

and multiplying (2.3) with 2D we obtain an equation for XL 

dxL     _dxL     o„,.       r^d\L     IfdxL ay— 2axL = D -\m-    (-> dt      " dy        ^" dy^ 

Here the identity 

^ = iAf^V (2.6) 
has been used. We call XL the local dissipation rate within the quasi-one-dimensional 
dissipation layer. 

In general a QlDL lies between minimum and maximum values of the mixture fraction 
that differs from 0 and 1, respectively 

0 < Zmin {t)<Z< Zmax (*)<!• (2-7) 

Therefore we introduce the normalized coordinate 

where 

AZ = Zmax — Zmin • (2-9) 

We now introduce a flamelet-type transformation (cf. Peters, 2000) by replacing y 
by Z* as independent variable and by setting the new time variable T = t. Using the 
transformation rules 

dt~   dt dZ*^ dr' ^ '   ' 

± = ^±- (2 11) 
dy       dy dZ* ^ '    ^ 

on (2.5) we obtain 

(^^f^ - f SS+^»-« - Ki^)^+['" - '' '■"'+'•>! ^ ■ <"^' 
This equation has several interesting features: The first term on the r.h.s. is a transport 
term where XL itself is the diffusivity in Z*-space. For a > 0 the second term may 
be interpreted as a productive term, while the third term resembles a dissipation term 
since it contains the square of derivatives. The last term, finally, results from the time 
dependence of Zmin and Zmax defined by the quantities b and c 

1    oZm,in 1    oZm.ax in i n\ 
^=Az-dr''=-Az-dr' (^-^^^ 

with the parameters 
b*=b (AZf ,c* = c {AZf . (2.14) 

appearing in (2.12). Let us note here that the time evolution of AZ can be calculated 
from (2.13) by 

dAZ 
dt 

-(6 + c)AZ = -26AZ (2.15) 
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where b = {b+c)/2. This shows that the parameter b describes the rate at which minima 
and maxima mixture fraction points move closer towards each other. We will therefore 
call b the mixing rate. 

Analytical solutions of (2.12) can be readily derived. For Zmin = 0 and Zmax = 1, for 
instance, the steady-state solution is given by eq. (3.47) in Peters (2000). For the unsteady 
case with a = 0 a closed form solution is also derived. For Zmin = 0 but Zmax{t) ¥" 1 
some unsteady solutions have recently been presented by Villermaux (2002). 

Since we are dealing with a one-dimensional structure the local distribution function 
of Z* within the QIDL, denoted by Pc, is analytically related to that of XL- This follows 
directly from the relation (cf. Papoulis, p. 95) 

where P{y) is uniform. With the definition (2.4) and D being constant this leads to 

XL(^*)'/' ■ PiiZ*) = const . (2.17) 

For the local structure this relation can be used to derive from (2.12) an equation for 
PL{Z') 

(^^) "SF - ~2     aZ*2     + l^   -Z (c +b)\-^-aP^, (2.18) 

where r has been set equal to t again. In (2.18) the first term on the r.h.s. is reminiscent 
of the anti-diffusion term in (1.1). This will be used in section 4 below. 

We now ask the question if there is a particular solution of (2.12) which is most likely 
to occur in a turbulent mixing field. For that purpose we need to go back to the original 
scalar equation (2.2). It is well known that, starting firom an arbitrary initial condition 
for Z{y, t) at t = 0, higher order harmonics in the solution of a paraboUc equation will 
die out very rapidly and the first harmonic representing a sine function will remain (cf. 
Kervokian, 1990, p.35, for example). For the reconstruction in section 4 we will therefore 
choose for Z(y, t) the particular form of a sine function in the interval between Zmin and 
Zmax- Because of symmetry b = c = b and the origin are placed at the center of the 
one-dimensional layer a.t Z = Zm where Zm is defined by 

Z'^max + Zmin ,_ , -. 
m = 2  ■ (2.19) 

The zero gradient points Zmin and Zmax are placed at y = - TrL/2 and y = + irL/2, 
respectively, where TTL is the width of the layer. Since the velocity v at any position y is 
—ay we obtain for the change of L 

v{L) = — = -aL, (2.20) 

which may be integrated as 

L(f) = Loe-/o°«'**. (2.21) 

A Lagrangian form of (2.2) may be obtained by introducing the new coordinates 

T) = y/Lit) ,T = t. (2.22) 

This leads with the transformation rules 

d      1 d     d d       d ,      , 
di = Ld^^Ft=''''d^ + d^ (2.23) 
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to 

^ = -^^ (2.24) 
dr      L\t) dri^ ' ^      ' 

It is easily seen that the sine function solution 

Z = Zm + —smr}, (2.25) 

equivalent to 

Z* = i(l + sinr/) , (2.26) 

satisfies (2.24). Inserting (2.25) into (2.24) and using (2.19) it is seen that there exists 
the following relation between b, L and D 

2b=^. (2.27) 

This shows that the mixing rate b increases as L{t) decreases. This will occur if the time 
integral in the exponent of (2.21) is positive, i.e. if the strain is compressive on time 
average. This is generally the case under turbulent conditions. Therefore compressive 
strain increases the mixing rate b and thereby enhances mixing. 

The scalar dissipation rate is calculated from (2.25) as 

XL = 2D(^y = :^^cos2^ = 6*cos^, (2.28) 

where b* = b{AZ)^. By replacing the cosine function by the sine function it is seen with 
(2.26) that XL can be expressed in terms of Z* as 

XL = ib*Z*{l-Z*), (2.29) 

This solution satisfies for 6 = c the balance of the last two terms in (2.12). Inserting it 
into the remaining part of (2.12) leads with T = tto 

^ = 6* (2a-46). (2.30) 
at 

Combining (2.27), (2.20) and (2.19) shows that (2.30) is satisfied for any prescribed 
fimction a{t). 

XL can also be written as 

XL = ib*{Z- Zmin)iZmax " Z) . (2.31) 

Since b, Zmin and Zmax depend on time we call this a quasi-steady-state solution. Also, 
using (2.17) we can calculate the local distribution function of Z within the QlDLs as 

PUZ; Zmin, Zma.) = (^ _ ^^.^)l/2(^^^^ _ ^)l/2   ' (2-32) 

where normalization has led to the ehmination of the parameter b*. In the following 
we will use (2.31) and (2.32) to reconstruct the pdf PziZ) and the conditional scalar 
dissipation rate xz in the DNS data. 
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|Box|      X      \        y        \        z        \ 

1 
2 
3 
4 

78, 90 
29, 41 
49, 61 
15, 26 

-1.3, 1.3 
-1.3, 1.3 
-1.3, 1.3 
-1.3, 1.3 

3.2, 7.7 
3.2, 7.7 
7.7, 12.2 
7.7, 12.2 

TABLE 1. Location of the boxes used to extract the DNS fields. The global dimensions of the 
DNS domain are [0,100] , [-4,4] and [0.,24.7] in the x,y and z directions respectively. 

3. A-priori testing using DNS data 

The testing will be based on instantaneous flow and scalar fields extracted from the 
DNS of a time-evolving mixing layer performed by Rogers and Moser (1994). This DNS 
was computed using a pseudo-spectral method to solve the 3D incompressible Navier- 
Stokes equations on a 512*210*192 Fourier/Jacobi modes domain. A transport equation 
for a scalar with Schmidt number 1.0 was carried along in the simulation. After an initial 
development, the mixing layer becomes self-similar from t = 87.5 to t = 150 in non- 
dimensional units. During the simulation, the Reynolds number based on the vorticity 
thickness Re^ = AUdu,/v grows from 1370 to 10800. 

Data from several times during this interval were used to test the theory. For each 
time, both velocity and scalar fields were extracted from four boxes centered around the 
midpoint y = 0 of the mixing layer. Table 1 gives a description of these subdomains. A 
conversion from Fourier space to physical space was performed. In physical space, the 
velocity and scalar fields were discretized on a regular structured grid with a resolution 
Ax which is of the order of the Kolmogorov scale. 

The ensemble of the four boxes was then used to demonstrate the existence and rele- 
vance of the QIDL structures presented in the theory above and to reconstruct both the 
pdf Pz and the conditional scalar dissipation rate xz- For brevity, we will only report 
data and analysis for one particular time, namely t = 150. 

3.1. Evidence of one-dimensional dissipation layers 

In Fig. 1 we show a portion of the scalar field Z{x, t) extracted from one of the boxes 
and in Fig. 2 the corresponding field of the instantaneous scalar dissipation rate x(x, t) 
defined by 

X = 2D{VZf (3.1) 

Fig. 1 shows fairly large structures in the scalar field. At their edges these structiures 
generate steep gradients and therefore thin layers with high values of the scalar dissipation 
rate as shown in Fig. 2. These layers have been observed both experimentally and in many 
DNS simulations and are the subject of the present analysis. 

3.2. Trajectories 

In order to analyze the local dependence of the local scalar dissipation rate on mixture 
fraction, thereby identifying QlDL structures, we calculate, starting from at every grid 
point in the boxes listed in Table 1, the direction of the scalar gradient (VZ). We follow 
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S/        1 ^12 

FIGURE 1. Mixture fraction field in a box extracted from the center of the mixing layer 

FIGURE 2. Instantaneous scalar dissipation rate field from the same box as Fig. 1 

this direction using a large number of small spatial steps of the order of 1/10 of the grid 
resolution Ax, recalculating the scalar gradient after each step. The scalar field between 
the grid points is computed by tri-linear interpolation. With this procedure we move in 
the direction of increasing as well as decreasing values of the mixtmre fraction imtil we 
find a maximum as well as a minimum point. These extremal points correspond to the 
location where a continuation of the trajectory in the direction calculated at the previous 
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  trajectory 2 
■   --— trajectoiy 3 

/""\        ■ 

1     .     1     .     1     . 

( \ \ ■ 

FIGURE 3. Scalar dissipation rate x extracted 
along three representative trajectories 

FIGURE 4. Reconstructed scalar dissipation 
rate XL aJong the same trajectories as Fig. 3 

1       1       1  '    I 1        ■        1 

■   ti»jectoiy2 
 tnjectoiyS 

■ 1    . j ^.■•■■.--'' 
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FIGURE 5. Reconstructed pdf Pi,(Z) along 
the three trajectories of Fig. 3 

step would lead to a change in sign of the mixture fraction gradient. A further criterion 
for having reached a zero gradient point is that the scalar dissipation rate x should be less 
than 0.0005. Trajectories which leave the box without ending at a minimum as well as a 
maximum point are not counted. Thereby we obtain from 21 million grid points within 
the four boxes 5 million trajectories. As a consequence of not counting trajectories that 
leave the box without reaching the two extremal points we will not capture the spike in 
the mixture fraction pdf at Z = 0 in figure 19 b for ^ = 0 in Rogers and Moser (1994). 

For the trajectories that were completed within the box we obtain one minimum and 
one maximum point associated with the original starting point of the trajectory. It is 
important to note that we are not considering physical zero gradient points as such, but 
end points of trajectories. They are weighted by the number of starting points and their 
joint pdf reflects the trajectories rather than that of the zero gradient points themselves. 

We calculate the scalar dissipation rate x along the trajectory using the definition 
(3.1). The rates b and c defined by (2.13) are calculated by using the balance of the last 
two terms of (2.12) in the limit XL -^ 0- This leads to 

for Z*-^0 and Z* 

.        1    % 
AAZdZ' 

1, respectively. 

c = 1   dx 
4AZdZ 

(3.2) 
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In Fig. 3 we show three calculated scalar dissipation rate profiles along trajectories 
between different minima and maxima points Zmin and Zmax- With these values and the 
mixing rate b calculated as the algebraic average of b and c we reconstruct in Fig. 4 the 
local scalar dissipation rate XL using (2.31). Using (2.32) we can also calculate the local 
distribution function PL which we show in Fig. 5. It is seen that, with the exception of 
trajectory 2, the shapes of % in Fig. 3 are close to the inverse parabolas XL in Fig- 4. 
We believe that trajectory 2 passes close to a saddle point in the 3-D mixture fraction 
field, with the intermediate minimum of x occurring in the vicinity of that saddle point. 
Trajectories with intermediate minima of x were found quite frequently in the numerical 
analysis of the DNS data. They could have been split into two or more trajectories to 
obtain a closer agreement with the theory, but we beheve that this would have introduced 
some additional arbitrariness. 

The shapes of the local pdf Pi shown in Fig. 5 are symmetric with respect to Zm 
of that trajectory and show singularities at their corresponding values Zmin and Zmax- 
These singularities follow directly from xi, = 0 in (2.17) and indicate that the trajectories 
have long tails in physical space where the scalar gradients are small. 

We will now use (2.32) to reconstruct the pdf Pz of the mixture fraction using values 
from those points only from which complete trajectories have been started. For that 
purpose we calculate the joint pdf Q{Zmin,Zmax,b) from the trajectories in the four 
boxes at time t = 150. The reconstructed pdf Pz,r is then obtained from 

Pz,r =   /      /     PL{Z; Zminj Zmax)    I       Q{Zmin^ Zmaxib) dbdZmin dZmax • (3-3) 
Jo  Jo Jo 

The comparison is shown in Fig. 6. The agreement is remarkably good, indicating that 
the symmetric shape of PL in (2.31) is sufficiently acciurate to reconstruct the scalar pdf. 
Other symmetric shapes have also been used but the resulting pdf seems to be quite 
insensitive to that choice. It is remarkable that the reconstruction is successful even 
though the shape of the local pdf PL is bimodal with singularities at Zmin and Zmax and 
Pz has a bell-shaped form. The ability to reconstruct Pz is a strong argument in favor 
of the predominance of QlDLs in the mixing process. 

In a similar way we reconstruct xz by using (2.31) and the joint pdf Q{Zmin, Zmax, b)- 
The reconstructed conditional scalar dissipation rate xz,r follows from 

XZ,r=   /      /      /      XL{Z; Zmin, Zmax, b)Q{Zmin, Zmax, b) dZmin dZmax db . (3-4) 
Jo Jo  Jo 

and is denoted as "reconstruction 1" in Fig. 7. The comparison is not as favorable as that 
in Fig. 6, when we take the mixing rate b from the trajectories. It is seen that "recon- 
struction 1" does not reproduce the two humps of the DNS around Z = 0.2 and Z = 0.8. 
As an alternative we could use the maximum value of x from each trajectory to param- 
eterize (2.31). Rather than to take these values directly we will derive an approximate 
relation between the maximum of x and b* and correct b* in (2.31) accordingly. 

It is evident that the sine function solution and therefore XL in (2.29) does not capture 
the initial unsteady development of the QlDLs. With the solution of (2.15) there exists a 
monotonic relation between the time and AZ of a QlDL. Therefore one may parameterize 
the additional time dependence of XL by a correlation for b* in (2.29) that depends on 
AZ only. The analysis of the trajectories from the DNS shows in fact that the maximum 
values of x, which occur at Z* = 0.5 and therefore according to (2.29) would be equal to 
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b*, can reasonably well be approximated by 

FIGURE 7. Comparison of the DNS and the 
reconstructed scalar dissipation rates 

Xma./b* = 1.0 +2.0 AZ/iAZ)r, 

Here the maximum values of AZ are : 

{AZ)r, = { 
2-2Z„ 

2Zm 
for 
for 

■m > 0.5 
<0.5 

(3.5) 

(3.6) 

which foUow from (4.5) below for Z — 0, Z* = 0 and Z = 1, Z* = 1, respectively. 
Dissipation layers that extend to Z = 0 and Z = 1 will therefore have dissipation rates 
which are significantly larger than predicted by (2.31). 

In the second reconstruction, shown as "reconstruction 2" in Fig. 7, we have multiplied 
(2.31) by the approximation of the r.h.s. of (3.5). This curve shows higher values than the 
DNS curve, but also shows its characteristic humps. By comparison with "reconstruction 
1" we conclude that the humps in the xz profile result from dissipation layers that extend 
either to Z = 0 or to Z = 1. Similar profiles of xz with two humps, for instance, are 
found in the constant density DNS data of Pantano et. al. (2002). 

4. An equation for. the joint distribution function of Zm and AZ 

Rather than considering the joint pdf of minimum and maximum points we will derive 
an equation for the joint distribution function of Zm and AZ firom first principles. The 
corresponding normalized pdf calculated firom the Zm and AZ values of the 5 million 
trajectories is shown in Fig. 8. 

Based on (2.9), (2.13) and (2.19) the substantial changes of Zm and AZ are 

dZrt b-c 
AZ, 

dAZ 
-{b + c)AZ. (4.1) 

dt 2 '       dt 

We realize that depending on the sign of (6 — c) the value of Zm either increases or 
decreases with time, while AZ always decreases. We also note that (cf. Gibson, 1968) 
minimum and maximum points are convected by the flow field but due to their nature, 
they do not diffuse. This is also valid for Zm and AZ. In a flow field Zm and AZ are 
therefore governed by the following convective-reactive equations 

dZr^ 
dt 

+ vVZm = ^AZ, 
dAZ 

dt 
+ V ■ V AZ = -{b + c) AZ (4.2) 
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FIGURE 8. Isocontour lines of the joint pdf of Zm and AZ 

In deriving the joint distribution function of Zm and AZ, we follow O'Brien (1980) 
who considered the pdf of a reactive-diffusive scalar. In such a derivation the formulation 
of the reaction term is exact while the diffusion term must be modelled. We are fortunate 
that Zm and AZ are non-diffusive such that, based on (4.2), the equation for the joint 
distribution function P of Z™ and AZ becomes 

dt 
+ <„.V^>42«^|Mfi_«<£+||££)=S(Z„,AZ).     (4.3) 

Here a yet unknown source term S(Zm, AZ) has been added on the r.h.s. The convective 
term containing the fine-grained joint density V must be modelled. The rates {b — c) and 
{b + c) in (4.3) are assumed to be fixed quantities that are known. 

Gibson (1968) discussed the initial production of zero gradient points by vortices that 
are strong enough to overturn the imposed scalar gradient. He also argued that secondary 
splitting would continuously generate new zero gradient points. Based on these consid- 
erations we expect that the production term 'S{Zm, AZ) in the equation for P must 
depend on properties of the turbulent flow field. Since the only quantity representing the 
flow field in the theory developed above is the strain rate a, we expect that T>{Zm, AZ) 
will depend on this quantity. 
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We want to show that, knowing the joint distribution function P{Zm, AZ), we would 
be able to reconstruct Pz- One way to do this is to reproduce in the homogeneous limit the 
exact equation (1.1) which governs Pz- For that purpose we make use of our knowledge 
about the local distribution function PL following from (2.18). We first multiply (4.3) by 
PL to obtain 

dt ^ ^    '      ' 2 dZm dAZ 

= P[i(6-c)Az|p^-(6 + c)Az|^]+Px,E(Z„,AZ).      (4.4) 

With the definition 

the grouping in square brackets in the third term on the r.h.s. of (4.4) becomes 

_(5-e)AZ^-(6 + c)AZ^=-[6-Z*(6 + c)]^. (4.6) 

Combining (2.18) and (4.4) with (4.6) then leads to 

dt    ^ ^"   ^\^L'')^        2        SZ2        ^ 

15((b-c)AZP^P)       g((fr + c)AZP,,P)     „np,nv/7     A7U4 7^ 
2 5^;: + dKZ ^PLP + PLnZm, AZ) (4.7) 

Integration over Zm and AZ shows that the third and the fourth term or the r.h.s. cancel 
after integration because P must be zero at the boundaries. Furthermore, the last two 
terms cancel if the source in (4.3) satisfies the condition 

Jo  Jo 
mZm,AZ)-aP)PLdAZdZm = 0 . (4.8) 

If (4.8) is to be valid for any form of PL it follows immediately that 

^Zm,AZ) = aP. (4.9) 

With the definitions 
/•l    /•(AZ)„„, 

Pz=       / PLPdAZdZm (4.10) 
Jo    JiAZUin 

Vz= I    I PtTdAZdZm (4.11) 
Jo Jo 

integration of (4.7) over Zm and AZ leads to a pdf equation for Z in the form 

^—"—!%?• (-) 
which reduces to (1.1) in the limit of homogeneous turbulence as anticipated. In (4.12) 

,1    ,(AZ)„„ 
XzPz=       / XLPiPdAZdZm, (4.13) 

Jo Jo 

which is consistent with the use of Bayes' theorem by O'Brien (1980) in the definition of 
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Xz as a conditional mean scalar dissipation rate. O'Brien also introduced a gradient flux 
approximation for the convective term which reads for the convective term in (4.3 

<vVV> = <v>VP-VDfVP, (4.14) 

where Dt is the turbulent diffusivity. Equation (4.3) then becomes with (4.9) and (4.14) 

Apart from the modeling of the convective term this equation is exact if the rates a, b 
and c are assumed to be fixed known quantities. 

5. Modeling aspects 

In the present analysis we have replaced the direct formulation for the scalar pdf 
equation for Z by an indirect formulation for the joint distribution function of Zm and 
AZ. Both are exact as far as the scalar field is concerned. The former is not well-posed 
and therefore requires ad-hoc modeling of the molecular mixing term. In transported 
pdf models this modeling is usually based on the assumption of a constant scalar-to-flow 
time scale ratio, (cf. Pope, 2000). On the contrary, in the present formulation molecular 
mixing occurs exclusively within the QlDLs. The independent variables in the present 
formulation are Zm and AZ, where Zm represents Z in a certain way while AZ captures 
non-local effects since the QlDLs may span over a large distance within the turbulent 
flow. Modeling is required for the mixing rate b = {b + c)/2, the asymmetry coefficient 
(6 — c) and the strain rate a. In the case of constant density turbulence the statistics of 
a are determined entirely by the velocity field, with the mean of a being proportional 
to e/k where e is the viscous dissipation and k is the kinetic energy of turbulence. The 
influence of the statistics of o on 6 and (6 — c) can in principle be determined by solving 
(2.2) with the use of (2.13) for various initial conditions. Such an approach will, to a 
certain extend, be problem-dependent. Since the mean of the mixing rate b represents 
the inverse of the scalar time and k/e represents the flow time, the approach offered here 
appears somewhat less empirical than the assumption of a constant scalar-to-flow time 
scale ratio used in current modeling approaches for the scalar pdf Pz- 

Details of the modeling will be addressed in a more complete paper on the subject. 

6. Conclusions 

By identifying quasi-one-dimensional dissipation layers as key elements we have out- 
lined a non-local theory of turbulent mixing. In this theory molecular mixing and its 
enhancement by compressive strain occurs exclusively within the local QlDLs, while 
their transport by turbulence and their formation and disappearance is described by a 
pdf transport equation. That equation remains to be modeled. The main assumption of 
the theory is that the layers are one-dimensional and that they can be parametrized by 
four parameters, the minimum and the maximum mixture fraction and the mixing rates 
b and c. 

This has been tested by generating trajectories and by reconstructing the mixture 
fraction pdf and the conditional scalar dissipation rate fi:om DNS data of Rogers and 
Moser. The reconstructed scalar pdf Pz,r shows good agreement with the scalar pdf Pz 
of the starting points of the trajectories. The reconstruction of the scalar dissipation 
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rate turns out to be quite sensitive to the mixing rate b and its dependence on other 
parameters of the problem. 
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Modelling turbulence-radiation interactions for 
large sooting turbulent flames 

By J.-F. RipoU AND H. Pitsch 

1. Motivation and objectives 
Large-scale turbulent flames and fires are strongly influenced by radiative energy trans- 

port. Especially in fires, fluid dynamics are governed by buoyancy, and hence, by the 
density and temperatvire distribution (Joulain (1998); Drysdale (1999); Tieszen (2001)). 
In pool fires, also the fuel mass flow rate is determined through radiative energy transfer 
firom the flame to the liquid fuel, which thereby determines the evaporation rate. An 
accurate description of radiative energy transfer, which, in fires, is mainly caused by soot 
radiation, is therefore mandatory in numerical simulations. 

Since a detailed description of radiation using, for instance, a discrete ordinate method 
is usually very expensive in numerical simulations, radiation is most commonly described 
using simplified models, such as the Milne-Eddington difiusion equations, valid in the 
limit of isotropic radiation, the Rosseland model, valid for high opacity media, or the 
optically thin model, valid for non absorbing media. Another simplification that is often 
made is neglecting turbulence-radiation interactions (TRI), although these have been 
found to be important, for instance, in pool fires (Tieszen (2001)). The aim of this paper 
is to provide a closed averaged radiation model accounting for TRI, which is simple and 
cost effective enough to be apphed in numerical simulations. 

A macroscopic radiation model, the Mi-model, which has also been called the max- 
imum entropy closure radiation model, has been developed successively by Minerbo 
(1978), Levermore (1984), Anile et al. (1991), MuUer & Ruggeri (1993), Fort (1997), 
Dubroca & Feugeas (1999), and Brunner & Holloway (2001). This model provides field 
equations for the radiative energy and the radiative flux vector. The major advantage 
of this model is that it remains valid independently of the opacity. Ripoll (2002) has 
developed an averaged form of the Mi-model for turbulent flows. The resulting formula^ 
tion, however, is very complex and expensive to solve. In the present paper, we develop 
a simplified formulation of this model, which is better suited for combustion problems, 
and particularly for fire simulations. It will be shown how various levels of simplified 
models can be obtained from the Mi-model with mean absorption coeflicients (RipoU 
et al. (2001)), and from these, closed form averaged models will be provided at different 
approximation levels. 

The paper is organized as follows. First, in section 2, we wiU give a short overview of 
the Ml radiation model and define the mean absorption coefficients. In section 3, different 
approximations will be provided for the mean absorption coefficients and the Eddington 
tensor, which is the most complex term in the Mi-model. An averaged form of the Mi- 
model for turbulent flows and closure for various terms will be presented in section 4. The 
variance of the radiative temperature remains as the only tmknown. Finally, in section 
5, models of various complexity for this quantity will be provided and discussed. 
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2. Radiative transfer equations 

2.1. The Ml radiation model with mean absorption coefficients 

The Ml radiation model developed by Minerbo (1978), Levermore (1984), Anile et al. 
(1991), MuUer & Ruggeri (1993), Fort (1997), Brunner & HoUoway (2001), and Dubroca 
& Feugeas (1999) describes the evolution of the radiative energy ER and the radiative flux 
FR of a non-scattering gray medium. Considering a total radiative intensity /(f, t, fi, u), 
where f is the position, t the time, fi the normalized direction vector and nu the fre- 
quency, ER{f, t) = {I)^ ^ and FR{f, t) = (fi /)      describe the first two moments of the 

I{f, t, a, f) distribution according to the direction and the frequency. When the medium 
follows a Rayleigh law, the Mi-model with mean absorption coefficients, developed by 
Ripoll et al. (2001), is written as 

dtER + V-FR = c[apaT'^-aEER] (2.1) 

-dtPR + cV fe ERJ = -ap FR (2.2) 

where T is the temperature of the medium, c is the speed of light and the constant a 
is defined by a = ^fsfg- = ^. Here, k is the Boltzmann constant, h is the Planck 
constant, and a^b is the Stefan-Boltzmann constant. 

The mean absorption coefficients, which represent the opacity at the macroscopic level, 
are denoted by crp for the Planck mean absorption coefficient, and as and ap for the 
two effective mean absorption coefficients defined below. The radiative flux is defined 

by i^ = (F|, F^, Ffj)"^ in R^. The Eddington tensor DR is computed in terms of the 
Eddington factor x(ll/||) and of the anisotropic factor /, given by /= (/x, fy, f^f = 
FRUCER) as 

i:l_yz:3y_l f 
DR = —^U + ^Y-^®^' '^*^""ifk' ^^'^^ 

Here, ||5|| denotes the Euclidian norm of a vector g, Id is the identity matrix, ® stands 
for the dyadic product, and x is defined by 

The radiative pressure is defined from the Eddington tensor as PR = DRER and the 
radiative temperature is defined through the radiative energy as 

TR -m- 
This macroscopic model is hyperbolic and has two equations describing the relaxation 

towards the radiative equilibrium, which is given by ER = aT'^ and FR = 0. Another 
important property is that the norm of the anisotropic factor /is bounded (||/|| € [0,1]), 
which implies that the radiative flux is controlled by the speed of fight. At the equihbrium, 
the anisotropic factor ||/|| is equal to zero, while ||/|| tends to 1 (i.e. ||FR|| = CER), when 
the emission is anisotropic. This corresponds to the transparent limit. This property 
ensures that the Afi-model stays valid for all values of the opacity, since the speed of light 
is never exceeded and both opaque and transparent limits are given by the Eddington 
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tensor. The expression for the Eddington tensor DR, which plays the role of a flux limiter, 
is derived from an underlying spectral radiative intensity. This intensity can describe a 
beam (by a Dirac function) as well as an isotropic emission (by a Planck function), and 
can hence be apphed in both the transparent and the opaque limit. Therefore, this model 
can be applied in fire simulations, where the main difficulty in modeling radiative heat 
transfer comes from the wide range of opacities of the medium, which leads to anisotropic 
radiation. This makes the commonly used diffusion models, such as the Milne-Eddington 
and Rosseland models, and the optically thin model inapplicable. 

An interesting alternative formulation of the Mj-model with mean absorption coeffi- 
cients can be derived by neglecting the time dependent terms in (2.1) and (2.2). Then, 
a diffusion equation for the radiative energy can be derived by eliminating the radiative 
flux from these equations as 

V • (—V • {AER)) = c[apaT^ - OEER] . (2.6) 
ffp 

Similarly, by eliminating the radiative energy, a diffusion equation for the radiative flux 
is obtained as 

_V . (:^ V ■ FR) + apFR = -cV • (—ifRaT^). (2.7) 
as CTE 

Note that taken separately, these equations are unclosed. 

2.2. Definition of the mean absorption coefficients 
For sooting flames, a Rayleigh diffusion law for the spectral absorption coefficient can 
be employed, and provides the opacity cr as a linear function of the frequency v as 
cr(i/) = Ciu. The factor Ci depends then on the soot volume fraction C^, and can be 
defined as (Lee & Tien (1981); Mullins & Williams (1987)) 

gi = -. 2     T!"o^2^! .22= 9-859475 X 10-^ C,   with   n = 2,p = 0.40.    (2.8) 

The mean absorption coefficients, derived in RipoU et al. (2001), take this frequency 
dependence of the opacity of the medium into account. They represent the opacity at a 
macroscopic level and have a strong influence on radiative heat transfer (Siegel & Howell 
(2001)). The mean absorption coefficients are given by 

ap = 360 Ci^T = CpT    with    Cp = 360%Ci (2.9) 

^^=^^^5(3 + P||2)(l-||AP)    ^^   '"^--Bil-UPy        ^^-^^^ 

with Cs = 1-03692. A and B are defined as 

^     2-V4-3II/P-. T 3 + IIAlp 
3(1-||AP)3 (2.11) 

3. Simplifications of the Mi-model with mean absorption coefficients 
3.1. Expansion of the absorption coefficients 

To simplify the effective mean coefficients as and ap, first the expression for B, given in 
(2.11), is introduced into (2.10), such that as and ap are functions of ||/|| only through 
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A. Since A tends to zero for small ||/||, with (2.11) we then write A as a second order 
Taylor series expansion for small ||/||, which is given by 

\\A\\ = 3/A\\f\\+0if). (3.1) 

After developing as and ap in a Taylor series expansion for small A and replacing A 
using (3.1), we obtain 

aE = CpGE{f)TR, (3.2) 

crF = CpGF{f)TR, (3.3) 
with 

GE{f) = l + y\ff + Om\') (3.4) 
and 

GH/) = j(l + ^ll/f + 0(l|/r)). (3.5) 

The isotropic limit for these coefficients can be obtained taking ||/|| = 0 in (3.4) and 
(3.5), which leads to G^j ~ 1 and Gp ^ 5/4. For the mean absorption coefficients in the 
isotropic limit follows 

(TE = CPTR   and   CTF = 5/4CPTR. (3.6) 

3.2. Expansion of the Eddington tensor 
The Eddington tensor DR has a complex form, which leads to various problems. For 
instance, the Jacobian matrix and the eigenveilues cannot be expressed easily for multi- 
dimensional problems. Then, the development of numerical schemes, particularly of im- 
plicit methods, is not straight forward. Even in one dimension, the Eddington tensor 
has to be treated in a special way, as, for instance, in the numerical scheme proposed 
by Brunner & HoUoway (2001). Moreover, if an averaged form of the Mi-model is being 
developed, this tensor must be simplified without modifying its main properties. Here, 
the Eddington tensor is expanded in a Taylor series around the directional equilibrium 
/ = 0 and around the anisotropic limit / = 1. The two limits are then connected. 

Combining (2.4) and (2.11) leads to x(^) = (1 + Spf )/(3 -I- \\Af). With this ex- 
pression, the Eddington tensor (2.3) can be rewritten as 

Expanding the Eddington tensor of the Mi-model as given by (3.7) for small ||i4|| and 
then replacing \\A\\ by Eq. (3.1) leads to 

D\^1 {i--jmfd+^-\\f\\H®n+oi\\fr) (3.8) 

An even more simplified form of the Eddington tensor can be achieved by considering 
only the diagonal contributions of both terms in (3.8), i.e. (£>^'*)a,6=x,y ^ (■DB°)a=i,y 
This leads to the following approximation 

^«4 l + ^ll/f+Odl/f) Id. (3.9) 

Similar to the expansions for the mean absorption coefficients, also here it is obvious 
that these expansions for small ||/|| cannot describe the anisotropic limit. It can easily 
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Left: Diagonal component DR" of the Eddington tensor DR and its Taylor series expansions. 
Deviatoric component Z)^" of the Eddington tensor DR and its Taylor series expansions 

be seen in (2.3) that, in the anisotropic limit, when / goes to 1, the first paxt of this 
tensor is zero, and that the second part tends to / 0 /. Here, this property is lost and 
the diagonal part does not become zero in this limit. Hence, this model is not able to 
describe strong disequilibrium effects. This can be seen in Fig. 1, where the components 
of the Eddington tensor and their Taylor expansions are plotted. 

However, this Hmit can be described by an expansion of the Eddington tensor for 
ll/li -^ 1. Again, since ||A|| = 1 for ||/|| = 1, we first expand (3.7) for ||A|| -* 1, and then 
replace ||J4|| by the expansion of ||A|| for ||/|| -^ 1, given by 

ll^ll = 1 + 2 (il/ll - 1) + 4 (11/11 -lf + 0 (dl/ll - 1)') . (3.10) 

The resulting expression for the Eddinton tensor in the limit ||/|| —> 1 is 

iffl ~ n ® n + (ll - 3H ® n)(-6||/||3 + 16||/||2 - 15i|/|| + 5) + O ((||/|| - 1)^) . (3.11) 

It is shown in Fig. 1 that the Eddington tensor can be approximated by the two Taylor 
series expansions obtained for small ||/|| and for ||/|| -> 1. To achieve good accuracy, the 
third order of (3.11) has to be retained. 

4. Averaged Mi-model with mean absorption coefficients 

The main purpose here is to develop an ensemble-averaged formulation of the radiation 
model, which accounts for turbulence-radiation interactions, but is still not too complex 
or numerically costly, so that it can be used in fire simulations. An averaged form of the 
Mi-model with mean absorption coefficients has already been derived by Ripoll (2002). 
However, because of the complexity of the averaged quantities, this model cannot be 
applied directly in numerical simulations. Here, a simplified form of this model will be 
derived. 

The following mean quantities are introduced: 

/   TVT{T)dT, TR 
JVT„ 

TRpTATR)dTR, (4.1) 
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Ti= [    fiVn{fi)dfi,   \/i = x,y,z,    and   C,= f     CJ>cACs)dC,,     (4.2) 
JV}. JVc. 

where the integration domains are given as VT = ^r^ =] — oo, +oo[, Vf =] — 1,1[, and 
Vc, =]0,1[. The probability density functions VT{T), VTR{TR), VC. (C,), and P/. (/j), Vi = 
X, y, z are assumed to be given by the following Gaussian and /? functions: 

^c.(C,) = (C.)-Hl-C.)/'-^g^ (4.5) 

with     af, = Tm .    /3/. = (1 -Tlhh .    7/. = ^^=T^ -l,yi = x,y,z,     (4.6) 
/t /t 

as = Cs-ys ,    ^ = (1-C,)7,,    7, = ^lt^_i,    r(x) = /°° e-H^^-^Ut. (4.7) 

The direct integration of the Gaussian functions leads to the moments of TR and T in 
the following form 

X^ = 945X^F^ X + 12&QX'X>^X^ + 378X'X'^ X^ + 36X'X'X%X^ 
T3-=y2 

A:8 = 105X^X^ + 420X'X' X  +210X'X' X^ + 28X'X'X^+X^, 

XS = l^X'X' X + lOX'X'X^ +X^, 

X'^^ZX'X'  +&X'X'X +ir, (4.8) 

where X stands for TR or T, and X'X' for T^T^ or TT'. 
To obtain a closed form of the averaged equations, two assumptions have to be made 

in the following. First, we assume that the soot volume fraction is uncorrelated from 
the radiative energy and flux and from the matter temperature. This assumption can be 
justified for &es, considering the experimental results given by Coppalle & Joyeux (1994). 
Note however, that correlations of the radiative properties of soot and other quantities 
are retained. 

Secondly, it is assumed that the anisotropic factor and the radiative temperature are 
uncorrelated. This assumption is difficult to justify, although in the hmit, where radiation 
is isotropic and the anisotropic factor tends to zero, also the correlation becomes small. 
Note however, that the assumption of uncorrelated anisotropic factor and radiative tem- 
perature does not hnply that radiative flux and radiative energy are uncorrelated, since 
ERFR=cfE%^ER'FR. 

According to the definition of the ensemble averages and the above assumptions, the 
mean radiative energy and flux can be determined as 

'ER = '^= f     aT^VTn{TR)dTR   and   FR = CJER. (4.9) 
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It is convenient to introduce turbulent effective mean absorption coefficients defined as 

.S, = ^=5.S. (4.10) 
T^ F _   _ 

Then, the averaged Mi-model with mean absorption coefficients can be written as 

dtER + V-FR = cypaT* - 4EK] , (4.12) 

""-dtpR + c V • CDie(/) Efl) = -4 FR , (4.13) 

where for a,b = x,y,z 

Dtif)= [   Dt{LJy,h)Vf{f)df. (4.14) 

Here, P/(/) is the joint pdf of /x, /j/, /y, which can in principle be modeled as a multi- 
variate y8-function, depending on the mean components and the variances and co-variances 
of fxifyi and fy. These can be computed at shown below. However, since the evaluation 
of this pdf is very complex, the further assumption that the components of the anisotropy 
factor are uncorrelated leads to 

D^R{f)= [      f      f    D^^{U,fy,f,)VfAU)Pf^ify)'PfA^)dJ.dfydf,,       (4.15) 
JT^f. •I'Dsy •I'Oj, 

where the pdfs of the individual components can be modeled according to (4.4). 
This system is closed, if the variances of the radiative energy and of the anisotropic 

factor are known. The variance of the anisotropic factor only appears in the expressions 
for GB, GF, and DR. If the variance of the anisotropic factor is assumed to be small, 
it follows that only the variances of the radiative energy is needed. Indeed, if Z^'/"' — 
0, Va = x,y,z, then GB(/) ~ GEQ), GFU) ^ GFQ), and DRU) ~ £>R(/). This 
assumption will be discussed in section 5.2. The model then becomes 

dtER + V-FR = ^P (aT^ - aGsiDTl) , (4.16) 

-dtFR + c V • DR{7)ER = -cCp GFH) aT% J. (4.17) 
c 

Similarly to the derivation of the diffusion formulation of the Mi-model given by (2.6) 
and (2.7), an averaged diffusion formulation can be obtained from (4.12) and (4.13). The 
diffusion equation for the mean radiative flux then becomes 

-V • (^4^ V-FR) + CT'PFR = -c^ . {^DR{f)ar'). (4.18) 

5. Model for the variances of the radiative variables 
In the averaged Mi-model, given by (4.12) and (4.13), the variance of both the ra- 

diative temperature and the anisotropy appear, and models for these quantities have to 
be provided. Expressions for the variances have been derived by Ripoll (2002). Here, 
simplified formulations for these quantities will be developed. 
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5.1. General formulation 
Using the assumption made in the previous section that the radiative energy and the 
anisotropy factor are uncorrelated, the variances of the radiative variables can be written 
as 

-r;2 
E'^E'j, = {ER-Enr = El-E;i, (5.1) 

r2 T^2 
F'^F'^ = {CJER - cfEnY = {C/ER - cf ERY = c^P El - cV  E^. (5.2) 

Introducing /'/' = P — f  into (5.2), leads to an expression relating the variances of the 
radiative flux, the anisotropy factor, and the radiative energy as 

»-72 
F'RFR = c' /'/' E% + c2 r E'j^E'j,. (5.3) 

Ripoll (2002) has derived transport equations for the variances of radiative energy and 
radiative flux. However, in their general form, mainly because of the diflFerent integral 
terms of the Eddington tensor, these equations are complex and not easily appUcable. 
If in the variance equation of the radiative flux, the directional equilibrium assumption 
is appUed for the Eddington tensor, and if, according to ||/|| —> 0 in (3.4) and (3.5), 
GE — 1 and Gp — 5/4, the equations for Ej^Ejj^ and FfjFjj become 

l^tEp^+cv • (Ip^ 7) -17 • v(Sp^ = 

<^p{a''T^ + ^a^T^m - o^ ER) - cCp{ a^ff _ ajf ER) , (5.4) 

\dtFlFl + j7VE^=-c'lcpiPa'f%-7'afiER). (5.5) 

5.2. Simplification around the equilibrium 

With (5.4) and (5.5), in three-dimensional simulations, four equations need to be solved 
to describe the spatial distribution of the variances of the radiative energy and the 
components of the radiative flux. 

A major simplification can be achieved by assuming that the variance of the anisotropic 
factor is negligible. This implies that fj^ = /o,Va = x,y,z, and hence the variance 
of the radiative flux can be expressed by the variance of the radiative temperature as 
ERFR = cfa E'jiEji, Va = x,y, z. This assumption has already been used in section 4 
to simplify the mean absorption coefficients and the Eddington tensor. It is noteworthy 
that neglect the variance of the anisotropy factor is not equivalent to neglect the variance 
of the radiative flux.   

It can be shown that this assumption also implies that \\p\\ = ||/|p, which also 
simplifies the second term on the right hand side in the equation for the radiative energy 
(5.4), leading to 

Idt (E^{1 + 3\\ff)) + cV • (E^ 7) = cCpia'f^ + ^a^f^ ||7||=^ - af^ ER) 

- cCp{l + ^||7f )(a^r| - all ER) . (5.6) 

This equation is now closed. The radiative energy is known from the solution of the equa- 
tion for the mean radiative temperature, the matter temperature and the soot volume 
fraction are given by the flow solver, and averages of powers of the radiative temperature 
can be obtained from (5.1), (4.8), and definition of the radiative temperature (2.5). 
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5.3. Algebraic model for the variance of the radiative energy 
Solving the transport equation for the variance of the radiative energy (5.6) can be 
avoided by introducing further simplifications. If the equation for the variance of the 
radiative energy is non-dimensionalized with the speed of light and a characteristic opac- 
ity (T, all terms are of the same order. This shows that the time needed to achieve a 
steady state scales with {(7c)~^, which is typically much smaller than the flow time scales 
that perturb the steady state of (5.6). The unsteady term in the variance equations can 
therefore be neglected. 

If it is assumed that production is equal to dissipation in the equation for the variance, 
an algebraic expression for the radiative temperature can be obtained as 

ni + ^ll7in-(i + X ii7f)^+(i + 7 ll7f)^(5I-5^) = o,      (5.7) 
where the definition of the radiative temperature (2.5) has been used. This leads in the 
limit 11/11 —> 0 to 

T9-ff+(T| -T5)lf = 0. (5.8) 
Using (4.8), the algebraic model (5.7) can be written in a polynomial form as 

with 

AT^Ti, +BTi,T^ +CT^T'j, +DT^Ti, + E = 0 (5.9) 

A = -900 (1 + ^\\ff)TR,       B = -1140 (1 + ^||/||2)T^, (5.10) 

C = -300 (1 + ^\\7f)T% - 37^,    E = T^il + ^ \\ff) - T^J^,      (5.11) 

Z) = -20(1 + H||7||2)T;-6T^T^. (5.12) 

This algebraic model is easy to solve and can be pre-tabulated in terms of T, TR, T'T', 
and 11/11. In the following we will demonstrate the consistency of this model in some 
relevant limits. To fully assess the validity of the algebraic model, which is based on 
equiUbrium assumptions, it will have to be compared with solutions of the variance 
transport equation (5.6). 

5.3.1. Case 11/11=0 
Results from the solution of (5.9) for ||7|| = 0 and T = 2000 K are shown in Fig. 2. 

It can be observed that for any combination of the parameters a positive solution for 
TfjTfj is obtained as long as 0 < ^R < T. Three comments can be made regarding Fig. 2. 
Firstly, when T ^ TR, there exists a non-zero positive Tj^T'j^, which is always larger than 
T'T', even if T'T' = 0. Secondly, both variances of radiative temperature and matter 
temperature are equal when T = TR, which is shown by the solid Une. This is consistent 
with the radiative equiUbrium in the instantaneous Mi-model. Finally, when T ^ TR 
nonlinear solutions are obtained. 

Even simpler models for the variance of the radiative temperature could be constructed 
from (4.8) by assuming that some higher moments of the radiative temperature and 
the matter temperature are equal. To assess this assumption, results from the algebraic 
model (5.8), denoted "Al" are shown for two values of the mean radiative temperature, 
TR = 1900 K and 1700 K in Fig. 2. Also shown are two simple approximations given by 
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50    100   150   200   250   300   350   400   450   500 
Variance of T (with T = 2000K) 

50    100   150   200   250   300   350   400   450   500 
Variance of T (withT = 2000K) 

FIGURE 2. Left: solution of the algebraic model for ||/|| = 0. Right: comparison of the algebraic model 
with other moment equations. 
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FIGURE 3. Solution of the algebraic model for different values of i|/|| with TR = 1900K (left) and 
TR = 1700 K (right). 

T% = T9 and T| = T^, which are denoted as "51" and "52", respectively. The solution 
of "Al" for T = TR = 2000 K, implying TT' = Tp^ is also shown, since it could also 
be used as a simple approximation for the variance of the radiative temperature. 

It appears that model "52" largely overpredicts the variance, while model "51" yields 
a variance approximately 50 K too high, if compared to the algebraic model. It can hence 
be concluded that the algebraic equation should be used, since it is not more difficult to 
solve than the simple models. 

5.3.2. Case \\f\\ ^ 0 

Results from the solution of the algebraic model (5.7) with ||/|[ 7^ 0 are given in Fig. 
3 for two diflFerent values of the radiative temperature, TR = 1700 K and 1900 K, a 
variation of the anisotropic factor from ||/|| = 0 to ||/|| = 1, and a matter temperature of 
T = 2000 K. Again, it is obvious that positive solutions for the variance of the radiative 
temperature exist throughout the entire parameter range. 

It is interesting to note that for stronger anisotropic disequilibrium (||/|| ^ 0), the vari- 
ance of the radiative temperature becomes smaller, while it becomes larger for stronger 
energetic disequiUbrium (TR ^ T). 
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6. Coupling with the Navier-Stokes equations 
In the previous sections, a closed form of the averaged Mi-model with mean absorp- 

tion coefficients has been presented, where closure has been introduced at various levels, 
such that models of different complexity and accuracy can be used. The only remaining 
unclosed terms are the mean matter temperature and its variance and the mean soot 
volume fraction. These quantities have to be provided from a combustion model, which 
is a part of the flow solver. Most combustion models, such as flamelet models (Peters 
(1984); Pitsch et al. (2000)), conditional moment closure models (Khmenko k Bilger 
(1999)), or pdf transport models (Pope (1985)) would allow to compute these quanti- 
ties. However, most combustion models compute for Favre-averaged quantities, while the 
present formulation of the radiation model is based on Reynolds-averages. However, if the 
density is known, the appropriate pdfs can be converted to yield either Favre-averaged 
or Reynolds-averaged quantities. As an example, using a flamelet model and neglecting 
the variance of the scalar dissipation rate, the Favre-averaged temperature would be 
computed according to 

1 

f=JT{Z)P{Z,Z^^)dZ, (6.1) 
0 

where Z is the mixture fraction, and the tilde denotes Favre-averages. Since the Favre pdf 
is defined as P(Z; Z, Z^) = p{Z)P{Z;Z,'Z^)/p with p being the density, the Reynolds 
averaged temperature can be obtained as 

j. 

T^ JT{Z)-^P{Z,W^)dZ. (6.2) 
0 

Using other combustion models, the appropriate quantities can be obtained accordingly. 

7. Conclusions 
In this paper, an ensemble-averaged version of the Mi radiation model with mean ab- 

sorption coefficients is proposed for describing radiation in large sooting flames. Closure 
is provided from transport equations for the variances of the radiative quantities, pre- 
sumed pdf assumptions, and the assumption that the anisotropic factor and the radiative 
temperature are uncorrelated. This latter assumption is equivalent to the uncoupHng the 
directional and energetic disequifibrium and seems to be a reasonable way to provide a 
closed and usable form of an averaged macroscopic radiative model. 
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Inverse parabolicity of PDF equations in turbulent 
flows - reversed-time diffusion or something else 

By A.Y. Klimenko f 

1. Motivation 
The focus of the present work is the well-known feature of the PDF transport equations 

in turbulent flows - the inverse parabolicity of the equations. While it is quite common 
in fluid mechanics to interpret equations with direct (forward-time) paraboHcity as ei- 
ther diffusion or a combination of diffusion and other processes (for example convection 
and reaction), the possibility of a similar interpretation for the equations with inverse 
parabolicity is not clear. In the present work, we investigate whether the inverse-parabolic 
terms in PDF equations can be treated as an "inverse diffusion". In other words, we look 
for a physical process which can be modeled by this inverse diffusion while complying 
with the major laws of nature and turbulence. 

2. The PDF transport equations 
The PDF techniques, which have been developed for last thirty years, represent an 

effective tool for deriving and analyzing the PDF transport equations in turbulent flows 
(Pope 1985, Kuznetsov & Sabelnikov 1989, Dopazo 1894, KUmenko & Bilger 1999, Pope 
2000). The PDF transport equation 

dt       dxi        dzi        dzjdzj ^    ' 

specifies the evolution of a joint PDF P = P(z; x, t) of the vaiues Z = (Zi,..., Z„) which 
are transported by the turbulence according to 

at     dxi       dxidxi ^   ' 

Here we introduce the conditional expectation Ui(z,x,t) of velocity Wt(x,i), the condi- 
tional dissipation Brj{z, x, t), which is, by definition, sjonmetric and positive semidefinite 
and the conditional "drift" coeflficient J[j(z,x,t) according to the following equations 

Ui = {vi\Z = z),  Bij = {DVZi-VZj\Z = z), Ai = {Wi\Z = z) (2.3) 

By default, the lower case indices run over physical coordinates (that is i = 1,2,3) while 
the upper case indices run over all dimensions of the transported quantities (that is 
/ = 1,2,3,4,..., n). Vector notation is used to denote vectors of maximal dimension in- 
troduced for a particular quantity. For example, x = (xi, 12, ^s) = (XJ; i = 1,2,3) and Z 
= {Zi,..., Zn) = (Zi; 1 = 1,...,n). The sample space variable for Z is denoted by z. The 
convention of summation over repeated indices appUes throughout the paper. The gradi- 
ent operators are calculated in the physical space V = {d/dxi, i = 1,2,3) For simplicity, 

t Mech. Eng. Dept., The University of Queensland, Qld. 4072, Australia; email: kli- 
menko@mech.uq.edu.au) 
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we assume that the density p is constant, and that the Reynolds number is high so that 
the terms involving transport by molecular diffusion (such as those specified by the term 
DV^P) and differential-diffusion effects can be neglected. Apart from these conventional 
assumptions, equation (2.1) is exact and can be derived from (2.2) by standard PDF 
techniques (Pope 1985, Kuznetsov k Sabelnikov 1989, Dopazo 1894, Klimenko & Bilger 
1999 and Pope 2000). The physical meaning of the values Wj depends on the actual 
physical meaning of the variables Zf. for reactive scalars Wj would represent a chemical 
source term while for velocity components Wj denotes the pressure gradient. For the 
sake of certainty, we assume that the first three components of Zj represent the velocity 
components, while the rest of the values Zi (that is Z4, ..., Zn) are reactive scalars. Thus 
we have 

Vi = Zi, Ui = zu Wi = —-^ (2.4) 

while the other source terms WQ = (W4,..., Wn) are assumed to be functions of the scalar 
variables Wa = Wa{Zi, ..., Z„) and their particular forms are not stipulated in the 
present work. By default, the Greek indices run over the "scalar quantities" a = 4, ...,n. 

The most interesting feature of (2.1) is its inverse parabolicity, determined by the 
positive sign of the last term. While direct paraboHc equations are quite common in fluid 
mechanics and other areas of engineering, inverse-parabolic equations seem quite unusual 
for any physical process but they are most common for the PDF equations in turbulent 
flows. The objective of the present work is to find a reasonable physical interpretation of 
this strange but common feature of the PDF equations. 

3. The reversed-time diflTusion model 

The terms with conventional direct paraboUcity, such as the last term on the left-hand 
side of (2.2), are called the diffusion terms, since these terms may normally be associ- 
ated with some diffusive Markov processes (or random-walk processes). For example, the 
diffusion of a small amount of dye in stationary fluid is governed by (2.2) with v = 0 
and M^ = 0. In this case the word "diffusion" reflects existence of the physical molecular 
diffusion process represented by a random walk of the dye molecules causing spread- 
ing of the dye into uncolored fluid. The Markov diffusion process specified by the Ito 
stochastic equation dx^ = {2Dyl'^dw\ would represent a good mathematical model of 
this molecular random-walk provided the value D matches the physical value of the dif- 
fusion coefficient (here w* represent independent Wiener processes which axe commonly 
used in constructing stochastic models). We should note that the Markov diffusion pro- 
cess is not necessarily identical to the physical random-walk of the dye molecules but the 
former would certainly represent an adequate mathematical model of the latter. Thus 
the physical interpretation of the equations involving direct parabolicity is, usually, not 
very difficult: using the Ito equations, one can build a Markov diffusion process which 
corresponds to the original diffusion equation. This Markov process should represent a 
reasonable model of the physical process which is described by the diffusion equation, 
provided that the coefficients of the Ito equation are matched well with the corresponding 
physical properties. 

On the face of the problem the physical interpretation of the inverse-parabolic equation 
(2.1) is only marginally more compUcated than the problems considered in the previous 
paragraph. One needs to introduce the reversed time T = -t and rewrite (2.1) as an 
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equation with direct parabolicity, 

dF-     du-F-     dAjF-     d^BuF- _^ ,^^. 
dT       dxi        dzi       dzjdzj ^ ■ ^ 

where 

A7 = -Aj,  uj = —Uj,  r = —t. 

Equation (3.1), obviously, satisfied by F~ = P and, at the same time, it can be inter- 
preted as the reversed-time Fokker-Planck equation (with drift coefiicients u~ and Aj 
and the diflrusion coefficients Bu) which governs the transitional probabilities for the Ito 
equation represented by the following system of stochastic equations 

dx~ = u~dr, dzj = Ajdr + bjj   ■   dwj (3.2) 

where Bjj = biK^jK/^ and Wj represents the Wiener processes driving the stochastic 
processes zj and x^ backward in time. The symbol "Ito~" indicates that the product 
should be evaluated in the "Ito sense" backward in time, that is, if dr is positive, bjj is 
evaluated at r but not at r + dr. This interpretation of the PDF equation is formally 
correct - the PDF of the constructed Markov process should coincide with P (provided 
the values of the coefficients Uj, Aj and Bu are specified in agreement with their physical 
definitions (2.3) and the initial distribution for the stochastic trajectories are set in 
accordance with P). We use a new function F~ in (2.1), since in addition to F~ = P, the 
function F~ may represent other solutions of the Fokker-Planck equation, depending also 
on normalization and the initial conditions (for example, the transitional probabilities). 

Although the constructed stochastic process models the PDF P well, we must refrain 
from claiming any deeper similarity between the model and some physical processes in 
turbulent flows (as we did while considering molecular diffusion of dye controlled by equa- 
tions with direct paraboUcity). It is not obvious if (and how) the stochastic trajectories 
specified by (3.2) can be associated with some physical trajectories. Indeed, all physical 
processes evolve forward in time while the constructed model develops backward in time, 
and it would be very difficult to specify a physical process which can correspond to the 
model. In order to illustrate this difficulty we introduce the following notation: 

• Realization of the process - a particular trajectory represented by a specific solution 
of the Ito equation; 

• Markov process - combines many realizations according to their probabilities. The 
Markov process is characterized by the diffusion and drift coefficients and by a certain 
PDF (such as P) which satisfies the Fokker-Planck equation and certain initial conditions; 

• Markov family - is characterized by certain diffusion and drift coefficients but com- 
prise many Markov processes which correspond to different solutions of the same Fokker- 
Planck equation with different initial conditions. The family does not correspond to a 
single PDF (such as P) but to all possible PDFs satisfying a given Fokker-Planck equa- 
tion. 

In the case of dye diffusion, we found that not only a particular Markov process, but 
also its family, correspond well to the physics of the problem (indeed, let us consider 
diffusion of the dye as a passive substance with different initial conditions). In the case of 
the reversed-time process, only the modeling Markov process is assigned a certain physical 
significance, not its family. This can be illustrated by the following consideration. Let 
us assume that at t = to (and r = TQ = -to) the PDF is sUghtly altered due to some 
external influence F~ = P+F' instead of F~ = P. Physically, the F~ would be different 
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from its original prognosis P for some time after to (that is for t > to) while the PDF 
F~ of the process specified by (3.1) and (3.2) would diflFer for some time before to (that 
is T > To). This illustrates that the coeflBcients of (3.1) and (3.2) must change for t > to 
if the PDF is disturbed att = to- Hence, although the Markov process F~ = P models 
the actual joint PDF P, the other processes from the same Maxkov family (represented 
by the other solutions of the same equation (3.1)) do not correspond well to the physical 
processes in turbulent flows. 

4. The forward-time difiTusion model 

The difficulties that we experienced in the previous section in finding a good physical 
interpretation of the reversed-time diffusion model axe, obviously, related to the fact that 
physical processes develop forward in time. Thus, it would be desirable to reverse the 
reversed-time process and force it to develop forward in time. We have a Markov process 
with the PDF F~ = P which evolves backward in time, and we wish to find another 
Markov process which evolves forward in time and which is equivalent to the original 
process. That is, if the trajectories of the first process are shown on a photograph, they 
are indistinguishable from the trajectories of the second process. However, one can easily 
distinguish the processes while watching their animated evolutions - they will propagate 
in opposite directions. The possibility of reversing a Markov process is not obvious, but 
is proved in the special Anderson (1982) theorem. It should also be noted that only a 
specific Markov process, but not its whole Markov family, can be reversed in time, and 
the original and reversed processes may belong to different Markov families. The original 
and reversed processes form adjoint couples - an attempt to reverse the reversed process 
once more yields the original process. It should be noted that, although the Fokker-Planck 
equation is essentially the same as the direct Kolmogorov equation of a Markov process, 
the inverse Kolmogorov equation of the same process should not be confused with the 
Fokker-Planck equation of the reversed-time process. The inverse Kolmogorov equation 
deals with transitional probabilities of the process, which are not specifically considered 
in this section. 

The Anderson (1982) equations, appHed to the reversed-time diffusion model specified 
by JP~ = P and by (3.1) - (3.2), indicate that the Fokker-Planck equation for the 
forward-time diffusion model is given by 

dF+     dutF+     dAJF+     d^BijF+ ^ 
dt '^   dxi   ^   dzi       dzidzj ^ ^ 

where 

Aj -Aj + p   g^^   ,  u^  ^u. 

The Ito equation, which corresponds to (4.1), is specified by 

dxf = ufdt, dzf = Ajdt + bu "°"^ dwj (4.2) 

The symbol "Ito"''" indicates that the product should be evaluated as an Ito product 
forward in time, and Bjj = biKbjx/^- The Anderson theorem provides even the possi- 
bility to reverse particular realizations of a Markov process, that is x^(—T) = X~{T) and 
Z^{—T) = Z~{T) provided the forward and backward Wiener processes are linked by the 
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equation 

du;+=du;7+$A(z~(T),x-(r),T)dT,   #A(z,x,-t) =-p-^- (4.3) 

We emphasize that, of course, all differentials in this equation (and in other equations 
of the present work) are evaluated in the same direction in time. The proof that the 
stochastic process TWJ defined by (4.3) may be treated as a Wiener process is far from 
trivial and can be found in Anderson (1982). 

The trajectories specified by s (3.2) and (4.2) can be conventionally called "the stochas- 
tic particles". Although the stochastic trajectories specified by (4.2) coincide with the 
stochastic trajectories of the reversed-time model, the process (4.2) is more convenient 
for our purposes, since it evolves forward in time. In the following sections, we demon- 
strate that, for the Markov family specified by (4.2) and (4.2), its physical analog (i.e. 
a physical process in a turbulent flow which can reasonably be modelled by the family) 
can be found. The family of stochastic trajectories, which are specified by (4.2),.can be 
associated with some physical trajectories in a turbulent flow. 

5. The physical process 
We consider the Lagrangian fluid particles transported by a tiurbulent flow jointly with 

the fields specified by (2.2), and introduce the following conditional expectation: 

Q = g(z,x,t) = (/|Z = z) (5.1) 

where / = f{x,t) represents the concentration of the fluid particles. The fluid particles 
are transported according to the equations 

dxt=v,{x*it),t)dt,     ^ + M = o (5.2) 

The second equation in (5.2), representing the transport equation for /, is equivalent to 
the first equation in (5.2) specifying the fluid particle trajectories x*(t). The function 
/ also allows us to select some of the fluid particles (/ set to 1 for the selected fluid 
particles and / set to 0 for others) or assign each fluid particle a certain weight /. 

At this point we declare that the stochastic particles of the forward-time diffusion 
model are considered to be a model for the turbulent transport of fluid particles. In 
order to be accurate in this declaration, we should state how the properties of the particle 
transport are simulated by the model. Specifically, we assume that F+ = QP, that is, 
F+ is a model for QP. The different Markov processes which belong to the family of 
(4.1) are interpreted as variations of Q, while P remains the same for the whole family. 
Since / = 1 obviously satisfies (5.2) and F+ = P satisfies (4.1), the forward-time model 
is trivial if it is restricted only to F+ = P. The assumed similarity of turbulent transport 
of fluid particles and a forward-time process is a hjrpothesis which is expected to be valid 
for any reasonable initial Q ^1. . 

The physical interpretation of modeUng stochastic trajectories needs some clarifica^ 
tion. Let us assume that the PDF P = P(z,x,<) is represented by a very large number 
of trajectories of the stochastic particles on the time interval ti < t < t2- These trajec- 
tories can be obtained equivalently by a) solving (3.2) backward in time from the initial 
distribution of the particles in z-x-space at t = t2 specified by P(z;x,t2); or b) solving s 
(4.2) forward in time from the initial distribution of the particles in z-x-space at t = ti 
specified by P(z;x,ti). We wish to select some of the stochastic particles so that their 
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distribution F{z, x, t) models the distribution of mEirked fluid particles in z-x-space for 
ti <t <t2 (i.e. F = QP but Q j^l since / is different for marked and non-marked fluid 
particles). In order to find F{z,x,t), we can select the stochastic particles so that their 
distribution a,t t = ti is given by F(z, x,ti). The particles must be selected solely on 
the basis of their positions in z-x-space at t = ti (i.e. by ignoring their future trajecto- 
ries). The distribution of the selected stochastic particles for ii <t<t2 corresponds to 
F(z, X, t). (The same effect can be achieved by assigning the initial weights of Q{z, x, ti) 
to all stochastic particles. Here, z and x are determined by the location of each stochastic 
particle at t = ti.) It should be noted that selecting the stochastic trajectories on the 
basis of particle positions at t = f2 and the distribution F(z, x,f2) would not, generally, 
give the expected distribution F(z, x, t) for the time interval ti <t < t2. The suggested 
interpretation allows us to model stochastic behavior of a single fluid particle with a given 
initial location Zi,xi in z-x-space. This can be done by selecting Q ~ 6{z — 2i)5{x-Xi), 
where the Delta function applied to the vector arguments denotes the product of the 
Delta functions applied to the components. 

In the next section, we assess the pluses and minuses of the forward-time diffusion 
model and its physical interpretation. This can be done by introducing a model which 
belongs to the same class as the forward-time diffusion model and, to the best of our 
knowledge, is the optimal model from this class. 

6. The optimal diffusion model 

Assuming that the evolution of the function F"*" = QP can be specified by the following 
equation 

dF+     duiF+     dAiF+     d^BijF+ ^ 
dt      dxi       dzi       dzidzj ^ ^ 

with the coefficients Ui{z,x,t), Ai{z,x,t) and Bjj{z,x,t) which are not known a pri- 
ori, the goal of this section is to find the definitions of these coefficients which comply 
with known properties of turbulence. The coefficients are then to be compared with 
the corresponding coefficients of the forward-time diffusion model. First, we note that 
integration of (6.1) over all zi should result in the averaged scalar-transport equation, 
d (/) /dt + div (v/) = 0. This condition implies that 

Since these integrals must be the same for any Q we conclude that 

Ui = Ui. (6.2) 

The second constraint is that F'^ = P (i.e. Q = 1) is a solution of (6.1). This condition 
can be satisfied if 

A   -A  ^ ^d{Bij + Bu)P 

Here we use the fact that P is governed by (2.1). The third constraint is related to the 
Kolmogorov (1941) theory of small-scale turbulence and the Richardson (1926) law of 
turbulent dispersion. According to the Kolmogorov theory, the turbulent dispersion of 
particles at small scales (although exceeding the viscous scales of turbulence) is deter- 
mined by the average dissipation of energy and, if any scalar fields are involved, by the 
average scalar dissipation. Since the characteristics considered here are conditional, we 
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assume that the conditional dissipation terms Bu are to be used. The evolution of F""" 
with sharp initial conditions (e.g. F'^ ~ <5(z - Zi)5(x - Xi) as previously considered) is 
determined by the diffusion term of (6.1) which is characterized by the coefficient JB/j. 
Thus we can write 

B ~ B (6.4) 

The vector-type notation used in this equation indicates a certain link or a general 
compatibility of magnitudes between the values Bjj and Bu and it does not mean that 
Bjj and Bu are the same. 

In order to investigate the other constraints which can be applied to the coefficients, 
it is convenient to rewrite (6.1) as an equation for Q 

dt dxi ozj oziozj 

where 5 = 0, 

2 dBuP      ,       ldiBu-Bu)P ,„„. 
Aj = Aj- --^^ = Aj + -p —  (6.6) 

and we take into account s (2.1), (6.2) and (6.3). Equation (6.5) corresponds to Condi- 
tional Moment Closure (CMC — Khmenko & Bilger 1999) with multiple velocity-scalar 
conditioning. Another constraint, which can be called "the Unear constraint", is conven- 
tional in CMC and explores similarity between scalaxs / and Z4,...,Z„. Indeed, since 
we neglect all differential diffusion effects, the conditional characteristics of the scalar /, 
which satisfies the equation 

2l + '^.D^^ = S (6.7) 
dt      dxi dxiOXi 

should be similar to these of the scalar /, which satisfies (5.2). Effectively, the replacement 
of (5.2) by (6.7) introduces the diffusing particles of Dreeben & Pope (1997), transported 
by the turbulence according to 

dx*i = Vi (x* (f) ,t)dt + y/2Ddw*i (6.8) 

The Brownian-type fluctuations, which are induced by the Wiener processes w*, simulate 
the molecular-diffusion effects. In addition, if 5 = S{Zi,...,Zn) 4" 0) the particles are 
allowed to appear (for 5 > 0) or disappear (for 5 < 0). The extension of the forward- 
time Markov model to these particles is reasonable since, if the Lagrangian trajectories 
in the phase space of the scalars ^4,..., Z„ are well-represented by the Markov process 
2:^(t),..., ^^(t), then any deterministic function 5 = S{z\, ...,zX) should also possess the 
Markov property. (Here we assume that, as in the chemical reactions, the source term 
S and the other source terms WQ are deterministic functions of the scalars Z4, ...,Z„). 
The purpose of the extension is to utilize the similarity of turbulent transport of scalars 
/ and Z4,...,Zn by making the transport equation for / similar to (2.2). At this point 
we note that / = aaZa + ao, S = aaWa form a solution of (6.7) where a^ and ao are 
arbitrary constants. Hence Q = aaZa+ao, S = aaWa must satisfy (5.1). This constraint 
leads us to the relation A° = Aa which, if we take into consideration (6.6), means in 
practice that 

Bai = Ki (6.9) 

Note that the matrices Bji and Bjj are symmetric. 
Although application of the linear constraint to the scalar quantities is a common 



60 A.Y. Klimenko 

practice in Conditional Methods, a similar constraint should not be appUed to the velocity 
components Zj (i = 1,2,3) (Klimenko 1998, Weinman & Klimenko 2000). Due to the 
specific nature of the pressure gradient, which cannot be expressed as a deterministic 
function of velocities and scalars, the turbulent transport of momentum is quite different 
from the turbulent transport of scalars. This point can be illustrated by assuming, in the 
spirit of (6.4), that 

Bij = ^CoBij (6.10) 

where Co is, eflFectively, the so-called Kolmogorov constant. The linear constraint applied 
to velocities would require Co = 2/3. Although this value was suggested in one of the 
early works (Krasnoff & Peskin 1971), the value of Co = 2/3 is not consistent with DNS 
and experiments for particle diffusion in turbulent flows. DNS indicate that Co is about 
2 (Yeung &; Pope 1989, Weinman & Klimenko 2000) while it is expected that Co ~ 7 
when the Reynolds number becomes very large (Sawford 1991). These acceptable values 
for Co are noticeably larger than 2/3. 

Comparison of the optimal diffusion model with the forward-time model indicates that 
all coefficients are the same with exception of Bij - the 3x3 matrix of the diffusion rate 
in the velocity phase space. The forward-time diffusion model corresponds to Co = 2/3 
which significantly underestimates the diffusion rate in the velocity space. 

7. Conclusions 
The transport equations for joint velocity/scalar PDFs are considered and the possibil- 

ity of interpreting the inverse-parabolic terms in these equations as reversed-time diffu- 
sion has been investigated. This interpretation presumes that the reversed-time diffusion 
process (that is, a Markov diffusion process which corresponds to the PDF equation) 
can be interpreted as a model for certain physical processes in turbulence. Although we 
found that the physical process of Lagrangian dispersion of fluid particles in a turbulent 
flow may be modeled by the trajectories of the diffusion process mentioned above, this 
possibiUty needs certain qualifications: 

1) Since the trajectories of the reversed-time diffusion process are propagating back- 
wards in time, they have to be reversed in time to match the properties of fluid particles 
which, obviously, develop forward in time. We call the result of reversing the reversed- 
time diffusion process the "forward-time diffusion model". 

2) The forward-time diffusion model also represents a Markov process, although it 
belongs to a different Markov family (i.e. the transport coefficients of the model and the 
original PDF equation are not the same). The forward-time diffusion process is naturally 
associated with the original PDF transport equation and, at the same time, has a direct 
link to the equations used in the Conditional Moment Closure methods. 

3) The forward-time diffusion model does generally comply with theoretical expec- 
tations for a Markov model of this kind. However, the forward-time diffusion model 
underpredicts the rate of diffusion in velocity space, while the prediction for the rate 
of diffusion in scalar space is accurate. These diffusion rates affect predictions for the 
turbulent dispersion from a localized source. 

4) The optimal diffusion model (i.e. the best model firom the same class of models) 
largely coincides with the forward-time diffusion model, except for the coefficients By- 
determining the diffusion rate in the velocity space. These coefficients should be 3 to 10 
times larger in the optimal model. 
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Filtered density-function modeling for 
large-eddy simulations of tm*bulent reacting flows 

By   Chong M. Cha AND Philippe Trouillet 

1. Motivation and objectives 
Laxge-eddy simulations (LES) have become practical for describing turbulent mixing 

in flows of engineering interest. At high Reynolds numbers, the response of small-scale 
mixing dynamics to the large-scale eddies is thought to be universal. Since only the 
unresolved small-scale (or subgrid-scale) processes require modeling in an LES, it is 
believed to be more robust than Reynolds-averaged (RANS) turbulence modeling, which 
also models the large-scale dynamics and hence must be tuned for different geometries. 

In turbulent reacting flows of practical interest, the chemical scales can be even smaller 
than the smallest turbulence scales. With initially-nonpremixed reactants, the separation 
of chemical and turbulence scales allows a presumed beta PDF and the steady flamelet 
model to describe the subgrid-scale mixing and reaction processes, respectively, in a LES 
(Cook & Riley 1994; Cook et al. 1997; Cook & Riley 1997). (The unsteady response 
of flamelets to residence-time effects in an LES has been accounted for by Pitsch & 
Steiner (2000a, 6).) The feedback of these subgrid-scale processes create significant density 
changes which impact the large-scale dynamics which, in turn, drive the modeled small- 
scale processes. Thus, a breakdown of flamelet modeling at the subgrid scale, for example 
when local extinction and reignition events become significant (Sripakagorn et al. 2000), 
would invalidate the entire LES calculation. 

With regard to local extinction, fluctuations due to internal intermittency have yet to 
be accounted for in an LES of any turbulent reacting flow. Although of little importance 
for first- and second-order moment predictions without reaction (Pope 2000), their effect 
has a nontrivial impact on stable burning, either in a flamelet or distributed reaction 
mode. This is especially important with present implementations based on flamelet mod- 
ehng, where no entirely satisfactory mechanism for reignition yet exists (Pitsch et al. 
2002). 

The present work focuses on the filtered-density-function (PDF) approach and its 
variants (Colucci et al. 1999; Jaberi et al. 1999). In the PDF approach, subgrid-scale 
processes are described by Lagrangian Monte Carlo calculations of the "large-eddy prob- 
ability density function" (Gao &: O'Brien 1993) for, most generally, the joint large-eddy 
PDF of velocity, the reacting scalars, and the dissipation. (The additional dissipation 
dimension would be required to account for intermittency effects (Pope 1990).) 

The dominant mechanism by which local reignition occvus in a turbulent flow is not 
completely understood. DNS with initially-nonpremtxed reactants in three-dimensional 
turbulence (Sripakagorn et al. 2000) seem to suggest that reignition occurs primarily by 
convective transport. Alternatively, triple-flame propagation may be the dominant mech- 
anism, as seen in two-dimensional "turbulence" simulations of autoignition (Domingo 
& Vervisch 1996). Accounting for the latter mechanism in an PDF approach may be 
prohibitively expensive computationally. For turbulence at high Reynolds number, the 
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expectation is that the former mechanism will dominate (Hewson & Kerstein 2001). 
Reignition by distributed combustion can be described by the FDF approach. 

These potentially attractive features of the family of FDF approaches, e.g., for describ- 
ing local extinction and reignition, motivate the present work. "FDF" is henceforth used 
to represent any of the variations of the transported large-eddy PDF approaches (Colucci 
et al. 1999; Jaberi et al. 1999) that also exist analogously in the RANS case (Pope 1985). 
In the FDF approach, the time-dependent structure of the turbulence down to the Taylor 
scale is reproduced; changes at finer resolution are accounted for by modeling the effec- 
tive diffusion at the unresolved scales. This is represented by the conditionally-averaged 
molecular mixing term in the joint PDF equation. Closure is obtained by modeling this 
term with the available single-point information, which then requires the spatial corre- 
lation to be prescribed via a characteristic length or time scale. Current micro-mixing 
models for reacting scalars ignore the influence of chemistry on this time scale by using 
the turbulent time scale of a conserved scalar in place of the reacting-scalar time scale. 
This impUcitly assumes distributed combustion. With realistic, Arrhenius kinetics, the 
large activation temperature steepens the local gradients of a reacting scalar, decreasing 
its length or time scale as compared to the conserved scalar under the same turbulent 
velocity field. Thus, for sufficiently fast chemistry, the generally used estimate of substi- 
tuting the time scale of the reacting scalar by that of a conserved scalar can significantly 
overestimate the true mixing time for the reacting scalar. 

An improved approach for modeling the time scale of a turbulent reacting scalar, valid 
in both the flamelet and distributed-combustion Hmits, has been developed by Cha (2001) 
and Cha & Trouillet (2002) within a RANS firamework. The model can readily be applied 
to any existing micro-mixing model where the time scales of the reacting scalars appear 
expHcitly. This would include classic linear-mean-square estimation (LMSE) (Dopazo 
1975), extended LMSE (Sabel'nikov & Gorokhovski 2001), and the variants of Curl's 
approach (Norris & Pope 1991), to name a few. The issues arising from its application 
with a RANS turbulence model are discussed in Cha (2001) and Cha & Trouillet (2002). 
For inhomogeneous turbulent flows, the assumption of local homogeneity and isotropy 
within a computational volume was made. 

The objective of the present work is to validate the analogous time-scale model for a 
reacting scalar in an LES framework. At present, the phenomena of local extinction and 
reignition are not addressed. Note that to describe local extinction with a mixing-limited 
combustion mode, a subgrid-scale mixing model must first be able to treat flamelet com- 
bustion, by definition. The new modeling presented in this paper addresses this specific 
issue. The expectation is better performance in a LES fi-amework as compared to the 
RANS case, as the assumption of local homogeneity and isotropy below the Taylor scale 
(for LES) vis-d-vis at the sub-integral scale (for RANS) would be more accurate. The 
modehng validation is performed using the direct numerical simulation (DNS) of a tur- 
bulent reacting jet (Boersma 1999), which was also used for the RANS validation case 
in Cha & Trouillet (2002). 

The paper is organized as follows. In the next section, the numerical experiment of 
Boersma (1999), which simulates a reacting jet with a single-step reaction, is described. 
In section 3, the micro-mixing model is described within the LES fi-amework. In section 4, 
results of the modehng study using the DNS of the jet flame are presented and discussed. 
Conclusions are given in section 5. 
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e{x,r) FIGURE 1. Temperature field 
from the turbulent reacting 
jet DNS of Boersma (1999). 
The planar slice shown lies 
on the jet centerline. Ax- 
ial and radial distances axe 
nondimensionalized by D, 
the jet nozzle diameter. The 
Re3Tiolds number based on 
fuel-nozzle exit conditions is 
4,000. 

2. Numerical experiment 

The a priori validation study uses the DNS of a turbulent reacting jet performed by 
Boersma (1999). Briefly, the Reynolds number based on fuel-nozzle exit conditions is 
4,000. A global, second-order, irreversible reaction where one mole of fuel (F) reacts with 
one mole of oxidizer (O) to form two moles of product (P) is considered: 

F -t- O -^ 2P. (2.1a) 

The chemical source terms for fuel, oxidizer, and product are ip = -s, SQ = -s, and 
ip = 2s, respectively, where 

s = kpifpi^o 

k = A exp 
Ze(l - e) 

1 - Q;(1 - e) 

(2.16) 

(2.1c) 

Here, V'j represents the mass fraction of the j-th species (j = F, O, or P), p is the mix- 
ture density, A is an effective frequency factor, a = {Tf - Too)/?/ is the heat-release 
parameter, Ze = aTa/Tf is the Zeldovich number, and 9 = {T - Too)/{Tf - Too) is 
the normalized temperature with Ta, Tf, and Tex, the activation, flame, and reference 
temperatures, respectively. The chemical-kinetic rate parameters were chosen to approx- 
imate methane/air combustion with 300 K temperatures for the initially segregated F 
and O streams: A = 10^,a = 0.8, and Ze = 8.0. The Schmidt number is 0.75 and Lewis 
numbers are unity. Heat release is accounted for, with a maximum density ratio of ap- 
proximately 5. The molecular diffusivities and viscosity are temperature-dependent. See 
Boersma (1999) for details of the simulation. 

Bilger's mixture fraction for this system can be written as 

e = -(# ■ ^o +1), 

one of three linear combinations of the reactive scalars (Shvab-Zeldovich coupling func- 
tions) for this case, which eliminates the chemical source term and conveniently nor- 
malizes this passive scalar such that it is unity in pure fuel and zero in pure oxi- 
dizer (Bilger 1980). For the present case, fuel and oxidizer are in stoichiometric pro- 
portion at ^ = ^st = 1/2. The dissipation rate of passive-scalar energy is represented by 
X = 2X>(V0^, where V is the diffusion coefficient of ^. In a turbulent flow, x reduces the 
variance of ^, thus characterizing the rate of mixing which drives ^ to its mean value. 
For nonpremixed systems, the local x(t, 0 describes the flux of fuel and oxidizer into 
the reaction zone at ^ = ^t (Peters 1984). For the present kinetic rate parameters, if x 
exceeds a value of 4.2 sec~^, the rate of mixing in ^ phase space exceeds the chemical 
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production rate and extinguishes the flame. That is, 4.2 is the quenching value of the 
scalar dissipation rate, X = Xqi ^ given by the steady flamelet solution (Peters 1984). 

Figure 1 shows the typical, instantaneous spatial distribution of the temperature field, 
6, from the DNS of the jet flame. The typical LES computational grid would not re- 
solve the entire range of turbulent scales shown. Accounting for the unresolved turbulent 
structure is a turbulence modeling issue. Accounting for the unresolved spatial structure 
of the reactive scalars is a combustion modeling issue and is discussed next. 

3. Modeling 

Within an LES computational volume, the transport equation for the subgrid-scale 
variance of the j-th reacting scalar can be written as 

1    d{Vf)     (i^^) {2V{Vi;,)^) _ 1 
ii^f)  dt      (vf) (vf)    ~r/ ^-"-'^ 

where local homogeneity and isotropy have been assumed. Here, ((■)) denotes the LES 
filtering operation, {'tpf) = {ipj) — (ipj) is the subgrid-scale variance, (SjV'j) — (sjipj) — 
{sj} {ipj) is the subgrid-scale covariance of Sj, the chemical soiu-ce term of the j-th. species, 
with Ipj, and (2X>(VV'j)^) = Xj is the scalar dissipation rate of the j-th scalar. The time 
scale of the j-th reactive scalar, Tj, is then Tj = {i>f)/{Xj)- If ^j = 0, then ipj is a 
conserved or passive scalar, £,, by definition. We denote the time scale of the passive 
scalar by T = (^'^)/(x), which can be related to the time scale of the turbulence (Pope 
1985). 

The limit of infinitely-fast chemistry of a simple chemistry case is worth elucidating: 
For a global, one-step, irreversible reaction, Sj = 0 outside an infinitely-thin reaction 
zone, transport is then governed by turbulent mixing and Tj = T. In the frozen chemistry 
limit, Sj = 0 and trivially Tj = T. Current particle-interaction models used in Lagrangian 
Monte Carlo simulations are valid in these limits. 

In the slow-chemistry limit, the transport of a reacting scalar is governed primarily 
by advective stirring (distributed combustion) and Tj « T. Then, for unity Schmidt 
number, the time scale of ipj can be constructed with the relevant turbulent length scale 
and diffusivity. For an LES, T ~ A^/i/f (Jaberi et al. 1999), where A is the grid width 
and ut the subgrid eddy viscosity. In the fast, but not infinitely fast, chemistry hmit 
(flamelet combustion), Tj can deviate from T by an order of magnitude over an integral 
time scale (Cha 2001; Cha & Trouillet 2002); 

Thus, current particle-interaction models, which replace the mixing time scale of a 
reactive scalar by the turbulence time scale, are not vafid in this limit. Formulation of 
the model for the Tj/T ratio for the LES case readily follows from the work of Cha (2001) 
and Cha & TrouiUet (2002). The model is based on (i) mapping closure, which describes 
the effects from the mixing at the sub-Taylor scale in this LES case, and (ii) flamelet 
modeling, which relates the mapping functions for the passive and reactive scalars. The 
synthesis of these modeUng elements is described in the following subsections. 

3.1. Passive-scalar mixing 

Mapping closure was originally conceived by Chen et al. (1989) to describe the proba- 
bility distribution of a passive scalar field advected by Navier-Stokes turbulence. Briefly, 
mapping closure provides the transformation from a standard, Gaussian reference field, 
zo, enforcing the exact transport equation for ^ of a binary mixing problem. Denoting the 
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transformation by ZQ ^ $, the generally nonlinear mapping, X, then describes the devi- 
ation of pj from the standard, Gaussian distribution of ZQ, pzg = (l/27r)^/2 exp(-2§/2). 
Using X, the fine-scale mixing and probability distribution of $ at scales below which 
((•)) is defined can be directly calculated using (Chen et al. 1989) 

,^(Vfl^, = ,)Hi'(VO')J^ ,3.2.) 

respectively. With local homogeneity and isotropy assumed within an LES computational 
cell, the analytical developments of Gao (19916,a) and O'Brien & Jiang (1991) can be 
applied to give (Cha & Trouillet 2002) 

X{zo) -r + lit- r) {l + erf [^ - ^err^ (2^^^^ - l)] }    (3.3a) 

p^in) = Eexp W - S [7 + /3erri (2^^-:::^ - l) 
2 

-log(^+-r)>  (3.36) 

valid for each LES computational cell, with the spatial average (^), subgrid rms ^ and 
(x) given by a suitable SGS turbulence model. Here, ^" and ^^ are the minimum and 
maximum values of i in each LES computational cell, S is determined from the subgrid- 
scale variance, t] is the sample space variable of ^, 7 = erf~^(2(7? - i~)l{i^ - i~) — 1), 
and /? = (l + l/S^)^/^, In an LES using the FDF approach, the values of (^ and (^'2) are 
known at each time in each cell. Estimates of ^- and ^+ are known from the information 
carried by the ensemble of notional particles. 

The current standard modeling practice in LES calculations is to construct passive- 
scalar mixing statistics from (0 and ^ = (f^)^/^ only, using an assumed beta PDF 
shape to approximate the large-eddy PDF. A priori studies show that the assumed 
beta PDF distribution well approximates filtered DNS data of homogeneous turbulence 
(Cook & Riley 1994) and the present, nonhomogeneous case of the turbulent reacting 
jet (Wall et al. 2000). For practical purposes, (3.36) with C~ = 0 and ?+ = 1 yields 
distributions essentially identical to the beta PDF (Cha & Trouillet 2002). (This can be 
readily verified by dfrect calculation, substituting the various possible values of (^) € [0,1] 
and ^'2 G [0,1/4] into (3.36), the PDF from mapping closure, against the well-known 
presumed beta PDF.) 

The beta PDF has not been related to first principles: its motivation Ues only in 
describing a bounded random variable whose first and second moments can be enforced 
by an LES (or RANS) turbulence model. In contrast, mapping closure describes the 
assumptions leading to (3.36), begiiming with the exact transport equation for ^ (Chen 
et al. 1989). In the late stages of mixing (^' -> 0), the two approaches are demonstrably 
consistent. For ^' -> 0, or equivalently, (x) -* 0, the beta PDF can be shown to asymptote 
to the Gaussian distribution (Girimaji 1991). This behavior is the fundamental modeling 
assumption on which mapping closure is based. In the late stages of mixing, the mapping 
becomes Hnear and (3.36) asymptotes to a normal distribution, T,p({(r] - (0)/^) -* Pzo- 
Thus, at the late stages of mixing, it is clear that only the first two moments of ^ 
characterize the entire, approximately-Gaussian, probability density function of ^ and 
the beta PDF and mapping closure are consistent (for ^' —> 0). 
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3.2. Reactive scalar mixing 
In the flamelet regime, the mapping function of the j-th. scalar, Yj, depends only on 
a single reference field and can be obtained from the flamelet equations and the map- 
ping function of the passive scalar (Cha 2001). Analogous to the passive scalar case, 
the mapping functions Yj allow multi-point information at scales below {(•)) to be deter- 
mined from multi-point information about the reference field, e.g., Vipj = {dYj/dzo)Vzo. 
Whence, 

follow, analogous to (3.2). With given Yj and X, the time-scale ratio of a reactive to a 
passive scalar can be readily written as 

_ (V'f)/(Xj)      {ri>f)/{idY/dzoy) 
Tj/T^ v.y//"v = Zi , J,. 2 (3-5) 

or, in terms of the flamelet solution, as (Cha 2001) 

Tj      i^f) {{dX/dzof) 

Here, ipj is taken to be the steady flamelet solution, which would allow Tj/T to be 
pretabulated in practice. The mapping function of the passive scalar, X, is given by. 
(3.3a. 

Implementations of the flamelet equations (steady or unsteady) usually employ ad- 
ditional, simplifying assumptions to model x(*)Oi ^^^ local mixing orthogonal to the 
reaction zone, i.e., in $ phase space. No entirely satisfactory method of accounting for 
intermittency effects in a flamelet approach currently exists. The present work is no excep- 
tion: As is traditionally done, the local, instantaneous scalar dissipation rate is replaced 
by the spatial average conditional on mixture fraction, thereby neglecting intermittency 
effects. For all practical piurposes, the resulting flamelet model would be constrained 
by the same limitations as the quasi-steady conditional-moment closure model (Cha & 
Kosaly 2000). 

3.3. Implementation issues 
Implementation issues of (3.6) in Lagrangian particle Monte Carlo calculations, for the 
joint PDF of the reactive scalars say, are described. The Tj/T ratio can be pretabulated 
as a function of (^), ^', and (x)- During the LES calculation, (^) and ^' are known in each 
computational cell from the subgrid-scale FDF. Well-known models exist for (x). Then, 
for a given computational cell, the Tj/T ratio simply multiplies the passive scalar time 
scale to obtain the time scale to be used for the j-th reacting scalar for a given particle 
interaction model. 

The restriction imposed by the quasi-steady flamelet assumption, namely that the time 
scale for (x) be much greater than the time taken for the unsteady flamelet solution to 
relax to its steady counterpart (Cha & Kosaly 2000), requires an ad hoc implementation 
strategy when this assumption is not met at a particular computational grid point. For 
example, the effects of extinction are important when (xl^t) ^ Xq] reignition events 
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ensue when the dissipation rate drops back below Xq (Cha et al. 2001). This hysteresis 
effect would necessitate a binary "switch" for every computational volume to ensure that 
the proper time scale was being used in the Monte Carlo simulations to describe reignition 
by distributed combustion, as discussed in the Introduction to this paper. (Note that the 
conditional scalar dissipation rate is known from (3.2o) and (3.3a).) The available time- 
developing information from the Monte Carlo simulations, e.g., the filtered temperature 
conditional at ^st, could then be used to switch back to 3.6 when the fiamelet regime is 
reached in a given computational grid point. 

4. Results and discussion 

Validation of the time-scale model uses the DNS of the turbulent reacting jet, akeady 
described in section 2. At a fixed time, t, the spatially-averaged statistics are calculated 
using the typical LES grid for this flow used to investigate the presumed beta PDF subgrid 
mixing model in Wall et al. (2000). Here, only results from Favre, or density-weighted, 
averaging is presented. Define an "LES grid point" as a single fixed point centered within 
a three-dimensional volume defined by the LES grid. (A "DNS grid point" is of course 
defined by the DNS calculation (Boersma 1999).) At a fixed axial distance, x, from the jet 
nozzle, a "sliding" filter is used to maximize the use of the DNS data, as is conventionally 
done for a priori validation studies of LES models. That is, each DNS grid point also 
corresponds to an LES grid point with consecutive LES volumes then overlapping. For 
the present study, we are interested in a subset of these LES grid points that contain 
the stoichiometric isosurface. For a given x, define an index I to label a DNS grid point 
following the stoichiometric isocontour, C = 6t, in the azimuthal direction. This will also 
correspond to an LES grid point due to the sUding filter. Two sets of calculations are 
performed: one in which the exact local values of ^~ and $+ from the ensemble of DNS 
points at an LES grid point are used, and a second set of calculations where ^~ and ^^ 
are set to zero and one, respectively. The values for ^~ and ^"^ will be unique for a given 
/ and will generally vary with I. 

Figure 2 shows the volume-averaged scalar dissipation rates of ^ and tj^p along the 
stoichiometric isocontomr, indexed by I, at various axial distances from a jet nozzle of 
diameter D. Results are at the same instant of time as figure (1). Symbols are the 
spatially-averaged DNS data, solid fines are modeling results using the exact local values 
of ^~ and ^^ within each LES volume, and dash-dash lines are modeling results with ^~ = 
0 and ^^ = 1. The spatially-filtered dissipation rate of ^ would be input into the model 
in practice. Here, (x) is calculated directly from the DNS data to circumvent any errors 
that could be made with the usual LES modehng, i.e., neglecting its transient response to 
the large-scale mixing. In the near-field of the jet {x/D < 15), the turbulence is not fully 
developed and (x) is fairly uniform circumnavigating the stoichiometric isocontour {i.e., 
as a function oil). Approximate axisymmetry can be observed in this region by inspection 
of figure 1. In the mid-field {x/D « 25) and far-field {x/D ta 35) regions of the jet, (x) 
can fluctuate by an order-of-magnitude with /. The developed turbulent structures in 
these regions can cause (x) along some regions of the stoichiometric isocontour to be 
comparable in magnitude to values foimd in the near-field of the jet. 

Figure 2 shows that the values of ^~ and ^^ can be set to 0 and 1 in (3.3a) with- 
out significantly influencing the modehng results for the reactive-scalar dissipation rate 
(Xp) = {x){{9Yp/dzo)^)/{{dX/dzo)'^). The (xp) predictions are generally in good agree- 
ment with the spatially-filtered DNS data. In the near-field of the jet, intermittency effects 
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FIGURE 2. Spatially-filtered dissipation rates of the passive scalar, ^, and the reacting scalar, 
ij)p, at three representative axial distances from the jet nozzle: x/D = 15 (near-field), x/D = 25 
(mid-field), and x/D = 35 (far-field). Results are at the same instant of time as in figure 1. 
Symbols are filtered DNS data circumnavigating the stoichiometric isocontour, ^ = C«t, for a 
given x; I is just a convenient label along the isocontour. Lines are correspondmg modeling 
predictions: Solid lines au-e modeling results using the exact local values of ^~ and ^"^ within 
each LES volimie at a given 7, dash-dash lines are modeling results with ^~ = 0 and ^■'' = 1. 

are absent and both mapping closure and the present implementation of flamelet model- 
ing are accurate. As is well known, residence-time eflfects are negligible in the near-field 
and steady flamelets are valid. Accm'ate modeling predictions of (xp) are thus ensured in 
the near-field given the validity of the component models (mapping closure and flamelet 
modeling) used in describing (xp). 

Some deviations between the (xp) data and predictions are seen where the turbulence 
is developed. Figure 2 shows the representative behavior in the mid-field (x/D = 25) and 
far-field {x/D = 35) regions of the jet. In particular, the deviations are conspicuous only 
for relatively large (x), and hence for relatively large ^'. 

To investigate the effect of the relatively large (x) or ^' on each of the two modeling 
components (flamelet modeling and mapping closure), the DNS is used to give insight 
into the subgrid-scale structure of the reacting and passive scalar mixing fields. Figiure 3 
shows the mass fraction of subgrid-scale product at three representative LES grid points: 
x/D = 35, / = 45 (where the maximum deviation between the modeling and filtered 
data occurs in the far-field region of the jet), at x/D = 25,1 = 10 (where the maximum 
deviation occurs in figure 2), and at an arbitrary, reference position of x/D = 25,1 = 19 
(where good agreement between the modeling and data is seen in figure 2). Also shown are 
the corresponding local values of x(0 ^* t^^ subgrid-scales properly nondimensionalized 
by Xq for the present discussion. 

With regard to the flamelet model, the neglect of the subgrid-scale spatial fluctuations 
of X contributes to the deviations between the filtered DNS data and the modeling predic- 
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FIGURE 3. Exact subgrid-scale values of x, the dissipation rate of ^, and the corresponding 
local product mass fractions, i/fp, at three representative LES grid points in figure 2: x/D = 35, 
/ = 45 (stars), x/D = 25, I = 10 (squares), and x/D = 25, I = 19 (squares). The dissipation 
rate of ^ is nondimensionalized by Xq, the quenching value of x for the present chemistry case 
as defined by the steady fiamelet solution. 

tions of figure 2. Figure 3 shows that when local values of x a^e large, local extinction is 
observed in the corresponding product mass fractions. Note that locally, X ~ Xq although 
ix) « Xq (for subplot x/D = 25, / = 10), which follows from the fine-scale structure of 
the dissipation rate. For smaller (x) (subplots x/D = 35,1 = 45 and x/D = 25,1 = 19), 
the subgrid-scale fluctuations of x are not large enough to reach local extinction and the 
fiamelet solution is accurate. 

With regard to mapping closure, in regions of the flow where the tmrbulence is devel- 
oped and where relatively large values of ^' occur (subplot x/D = 25, / = 10 in figure 
3), multi-scale mixing processes are occurring. In these regions, a unique set of ^"'" and 
^~ values misrepresents the true subgrid-scale structure of the mixing. This is because, 
for developed turbulence, the large difference between global ^^ and $~, proportional to 
^', necessarily result in additional length scales corresponding to the distribution of local 
^~ and ^+. Thus, ^~ and ^^ as defined by mapping closure less accurately represents 
the true subgrid-scale mixing. 

With RANS turbulence modeling, the effect of neglecting the true values of ^~ and ^^ 
had a negligible infiuence on the modeling results (Cha & Trouillet 2002): At a given x, 
for time-averaged ^ values close to either 0 or 1, the variance of ^ will be small and hence 
^+(x) and ^"(a;) could be set to 1 and 0, respectively. At intermediate (^) values, the 
effect of intermittency drives C~ -* 0 and ^+ —> 1 in the statistically stationary limit, and 
again ^~ and ^+ could be set to 0 and 1 without significantly influencing modeling results 
within a RANS turbulence modeling firamework. Here, for the LES case, accounting for 
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FIGURE 4. Time scale ratio of the reactive to passive scalar for increasing axial distances from 
the jet nozzle, from x/D = 15 to x/D = 35, the approximate time-averaged stoichiometric 
flame-length. Symbols are filtered DNS data. Lines are corresponding modeling predictions: 
Solid lines ax& modeling results using the exact local values of ^~ and ^'^ within each LES 
volume at a given J, dash-dash lines are modeling results with ^~ = 0 and €,'^ = 1. 

(spatial) intermittency effects can sometimes be important when the subgrid variance of 
£, is sufficiently large, as illustrated above. For the typical LES grid spacing employed in 
the present case (Wall et al. 2000), the subgrid variance is generally small and the effect 
of neglecting i~ and ^^ has negligible impact on the overall modeling performance. In 
practice, the expectation is that ^~ and ^+ can be set to 0 and 1 in (3.3) as the subgrid- 
scale variance of £, will generally be small in a large-eddy simulation. 

Figure 4 shows the modeling predictions (lines) of the time scale ratio, (3.6), versus 
the experimental data obtained from the filtered DNS (symbols). The comparisons are 
made for the same grid points as in figure 2 (and for the same axial distances as in the 
RANS case of Cha & Trouillet (2002)). Again, solid lines are modeling results using the 
exact local values of ^~ and ^^ within each LES volume at a given /, and dash-dash 
lines are modeling results with ^~ = 0 and ^"'" = 1. As was also seen in the reactive 
scalar dissipation rate predictions, ^~ and ^+ can be set to 0 and 1 in (3.3a) without 
significantly influencing the modeling results, here for the time scale ratio. T?he Tj/T 
predictions are in excellent agreement in the near-field of the jet. The deviations in the 
mid- and far-fields of the jet occur when ^' or (x) is sufficiently large, which follows 
directly from the above discussion of Figs. 2 and 3. Overall, the results show that Tj can 
be significantly less than T, even in the mid- and far-field regions of the jet for the LES 
case. The new modeling represents a significant improvement over simply approximating 
Tj by T alone. 

5. Summary and conclusions 

Transported probability-density-function approaches for the large-eddy PDF, known 
as the "filtered density function approach" (FDF), require modeling of the mixing pro- 
cesses at the subgrid-scale. For large-eddy simulations of initially nonpremixed turbulent 
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reacting flows, the current FDF approaches can, strictly, treat only distributed combus- 
tion (small Damkohler number flows) because of the limitations imposed by neglecting 
the effects of chemistry on the mixing process. Thus many problems of practical engi- 
neering interest, where Arrhenius kinetics are used and the chemistry is relatively fast, 
are beyond the reach of FDF. The merits of the FDF approach include the potential to 
describe local reignition events among others. To describe local extinction from a mixing- 
limited combustion mode, the model must first be able to treat flamelet combustion, by 
definition. A model for the time scale of reactive scalar mixing at the subgrid-scale that 
is valid both for flamelet and distributed combustion has been developed, (3.6) in this 
paper. The model is based on mapping closure, to describe the subgrid-scale mixing of 
the passive scalar, and flamelet modeling, to describe the mixing of the reactive scalars 
in mixture fraction space. Application to Lagrangian particle Monte Carlo calculations 
has been described. 

The modeUng results using spatially-filtered DNS data of a turbulent reacting jet (with 
one-step, Arrhenius chemical kinetics, and heat release) show generally good predictions 
of the reactive scalar time scale, which can be significantly less than the passive scalar 
time scale even in the mid-field regions of the jet. Mapping closure does not account 
for intermittency, nor does the present, conventional implementation of steady flamelet 
modehng needed to obtain the reactive scalar mapping functions. In regions of the jet 
flame where the turbulence is developed and the subgrid variance and dissipation rate 
of the passive scalar are relatively large, some deviation between the data and modeling 
predictions occur. 
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Transported PDF modeling of turbulent 
premixed combustion 
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1. Motivation and objectives 
Computational implementation of transported PDF methods for txirbulent reacting 

flows (Pope 1985, 1990) use an ensemble of "notional" particles to represent the joint 
probability density function (PDF) of, most generally, the velocity, reacting scalars, and 
their dissipation rates. Following Pope (1997), the evolution equation for the i-th notional 
particle, among Np total particles in an unresolved subdomain of the flow field, can be 
written as 

^t/'^')(t) = (M + 5)tA«, (1.1) 
at 

where t/» represents a set of numbers defining the state space, M is the mixing or transport 
operator, and S is the source/sink operator. The operators map the state space onto 
itself. For simplicity, consider only the thermocheinical state (a composition of Ng total 
species, the temperatiure or enthalpy, and pressure). Then ij) contains iV^ + 2 elements. 
S is known a ■priori for a given chemical-kinetic scheme and heat-loss model (e.g. for 
radiation). For many practical engineering appUcations, these are highly nonlinear, but 
depend only on the single-point information oiij}. M, on the other hand, contains the 
spatial derivatives oft/" at scales below that of the subdomain and hence must be modeled. 
This is generally done with the available single-point information only, by specifying 
the spatial or temporal correlation. For practical engineering applications, current (and 
futinre) computational limitations demand that M describe turbulent as well as molecular 
transport. For example, in the simplest of these mixing models (Dopazo 1994), 

Mtj)^ ' = ^ , 
•^mix 

where Tmix is an eflFective mixing time scale accounting for the enhanced diflFusion due 
to turbulence. In apphcation with RANS, Tmix is given by the integral timescale of the 
turbulence; with LES, by the micro-timescale. 

In practice, (1.1) is usually integrated using a "time-splitting" method (Pope 1985): To 
calculate the change in ^^*^ over a Af, the M and S operations are apphed separately, 
and each repeatedly in inverse proportion to the inherent time scales associated with 
each operator. For example, if the smallest chemical time scale is much smaller than 
the mixing time scale, the majority of the computational overhead will then be spent 
repetitively applying the S operator, i.e., integrating 

|v«(t) = 5T/,«. (1.2) 

In practical applications, (1.2) is "stiff", that is, a large difference between the maximum 
and minimum absolute eigenvalues of the Jacobian of S exists. Physically, this is due 
to a large separation of the chemical time scales. Denote the chemical time scales by 
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Ichem- Typically, in engineering applications, the minimum Tchem ~ 10~® sec as compared 
to Tmix ~ 10~^ to lO"** sec (Pope 1997) and hence most of the computational costs 
are spent integrating (1.2). Sophisticated software packages are generally available to 
integrate large systems of stiflf equations (Byrne & Hindmarsh 1987). Due to the Jacobian 
evaluations, the computational time and storage requirements in solving (1.2) scale with 
iV^, seriously debilitating this approach for practical engineering applications where A'^s 
is usually large. ParalleUzation of (1.2) is non-trivial. 

Alternatively, a stochastic algorithm has been developed by Bunker et al. (1974) and 
Gillespie (1992) to solve (1.2). Briefly, the stochastic algorithm interprets the chemical 
reactions as random queuing events. The occurrence of a single reaction event follows 
a Poisson process, whose time scale depends upon the local state of the system. Thus, 
changes in "^/»^')" do not occur over a fixed Af, but follow from 

M = min{(Af)i, (AO2, • • ■, (A%.,} (1.3) 

where At is now a random variable defined by the set of exponentially distributed (Ai)/fc, 
which describes the next time-of-arrival of the k-th. reaction among the total number of 
reactions, Nr- Note that k and At are not independent random variables due to the rain 
function of (1.3). With the arrival of each reaction event, the relevant species "concen- 
trations" are updated accordingly. Note that, Jacobian evaluations are not required and, 
on average, the algorithm will automatically update changes in the faster species more 
often. The algorithm actually updates extrinsic values; the (intrinsic) concentrations are 
defined according to a system size (van Kampen 1992; Gardiner 1983). A review and for- 
mulation of the chemical Master equation by Poisson processes is described in Gardiner 
(1983). The computational time of the stochastic algorithm at an accuracy fixed by a 
number of realizations and/or number of stochastic particles will scale linearly with Nr- 
Storage requirements scale only linearly with N,. These attributes make it ideal for sys- 
tems with a large number of species. ParalleUzation of the algorithm is trivial, allowing 
essentially arbitrary tolerances (with unlimited processor number). 

' For the same computational time under serial computation, the stochastic algorithm 
yields less accurate solutions as compared to the deterministic approach or direct inte- 
gration of (1.2). However, Bunker et al. (1974) report that, with acceptable statistical 
errors, the computational gain using the stochastic chemistry algorithm is a factor of 10 
faster than direct integration. A reduced chemistry mechanism with iV^ = 6 was used. 
Extrapolating to larger chemical kinetic mechanisms, a 10-fold increase in the number of 
species would result in a 10^-fold increase in the computational time for direct integration 
and thus a total of a 100-fold gain in computational speed for the stochastic algorithm 
over direct integration assuming a 10-fold increase in the number of reactions. 

The current state-of-the-art of the stochastic chemistry algorithm includes only zero- 
dimensional applications, e.g., well-stirred reactor calculations, but apply realistic, Ar- 
rhenius and multi-step kinetic models. No transport model with the stochastic chemistry 
algorithm exists, motivating the present work. Following (1.3), the most straightforward 
method of introducing transport is through additional queuing events. In this paper, this 
is done by incorporating random walks and/or triplet maps into the algorithm. Rep- 
resentation of continuous laminar diffusive systems by stochastic methods (i.e., jump 
process approximations for molecular diffusion and chemical reaction) are well-known, 
but limited to simple reaction (Gardiner 1983). Here, realistic, Arrhenius kinetics are 
also considered as well as turbulent transport. 
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At present, the main issues remaining in transported PDF modeling of turbulent pre- 
mixed and nonpremixed combustion include: 

(i) Accounting for the small-scale structure of turbulence in the micro-mixing models, 
(ii) extension to the flamelet combustion regimes (another modeUng issue), and 
(iii) computational feasibility (predominantly an implementation issue). 

The objectives of the paper are to address the latter two issues for applications to turbu- 
lent premixed combustion. Modeling approaches with regard to issue (i) usually employ 
stochastic methods to describe intermittency effects (Pope k Chen 1990; Fox 1997). 
With regard to issue (ii), Cha & Trouillet (2002a,6) have extended transported PDF 
modeling to the flamelet regime for nonpremixed combustion; no significant additional 
computational demands are required in correcting the reactive scalar timescales for many 
existing micro-mixing models. For the premixed case. Pope & Anand (1984) have treated 
flamelet combustion, but only in Damkohler's large-scale turbulence limit. Their method 
preserves the unmodified convective-diffusive flame structure of the preheat zone and is 
thus hmited to the corrugated flamelet regime. Extension of their method to Damkohler's 
small-scale Umit is described in this paper; again, no significant additional computational 
demands would be required over that of their existing approach of describing the corru- 
gated flamelet regime. The present formulation of a transported PDF model for turbulent 
premixed combustion is applicable in both flamelet regimes and for distributed combus- 
tion (and the entire transition in between) with one unifying transport model: Kerstein's 
one-dimensional turbulence. Applications of Kerstein's one-dimensional turbulence con- 
cept to premixed flames using direct integration for the chemistry have been performed 
by Menon and co-workers with Fickian molecular diffusion replaced by a laminar flame 
propagation process (Menon & Kerstein 1992) and, more recently, by explicit finite differ- 
encing of the diffusion term (Smith & Menon 1996). Here, the one-dimensional turbulence 
concept with stochastic chemistry is developed. 

The paper is organized as follows. In the next section, the canonical problem of a 
reaction-diffusion wave is described and the regimes of turbulent premixed combustion 
reviewed. Section 3 presents the results from two validation studies: (i) in the laminar 
case, one-dimensional premixed flames are simulated and their laminar flame speeds 
compared to exact solutions; and (ii) for an isotropic turbulence case, the scaling of the 
turbulent burning velocity is compared with the well-known relations in Damkohler's 
small- and large-scale turbulence limits. Conclusions are given in the final section. 

2. Background 

2.1.  The laminar premixed flame 

The simplest model, still preserving the underlying physics (enhanced transport due to 
chemical reaction, in this case), can be written as 

dQ       dQ        B^e      . 

for traveUing wave solutions. Here, s is the propagation velocity (defined below), which is 
generally time-dependent, and S is the nonhnear source term of 9. A transformation into 
a co-moving reference frame, z = x — st, has been made from the laboratory reference 
frame, x, assuming waves travelling left to right. For a flame, this equation describes the 
transport of 0 from a "burnt" temperature 0 = 0;,, 5 = 0 at one boundary (x = -co) 
into the "unburnt" temperature 0 = 0^, 5 = 0 at the other boundary {x = -l-oo) with 
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FIGURE 1. Structure of a one-dimensional laminar reaction-diffusion wave. Bold solid lines 
show the wave which travels left to right. Dash-dash lines are the convection term, dash-dot 
diffusion, and dot-dot the source term. Subplot (i) shows the structure of the Fisher (1937) 
and Kolmogorov et al. (1937) flame (FKPP); subplot (ii) the structure of the Zeldovich & 
Prank-Kamenetsky (1938) flame (ZFK). 

9u < 0 < 06, 0 > 0. Two nonlinear source terms are considered based on the logistic 
form of 5 = k{Q - 0„)(©h - 0)/(06 - 0„)^ for (i) constant jfc = >1 and (ii) for the 
Arrhenius formula^ = j4exp(-0o/©) with large activation temperatures, ©„ » ©6) 
and constant A. The former source term is well-known in the natural sciences since its 
formulation by Fisher (1937) to describe a limiting case for the propagation of advanta- 
geous genes in a population; the latter, in combustion science following the pioneering 
work of Zeldovich k Prank-Kamenetsky (1938). See Williams (1985) and Clavin (1994) 
for details. 

No known general analytical solution exists for the Zeldovich & Prank-Kamenetsky 
case, henceforth referred to as "ZFK" for convenience. Asymptotics (for large ©a) is 
described in Williams (1985) and Clavin (1994); clever iterative numerical strategies in 
Williams (1985). For the Fisher equation, the approximate analj^ical solution is due to 
Kolmogorov et al. (1937). We henceforth refer to this case as "FKPP". For both cases, 
the approximate solutions initialize finite-differenced numerical computations to yield 
their steady-state profiles. The Monte Carlo simulations (with the stochastic chemistry 
algorithm) are compared to these solutions (in section 3). 

Defining 9 = {Q — ©„)/(©;, — ©„) and the relevant length and time scales of the pre- 
mixed flame as ip and Tp, respectively, yields the following nondimensionalized equations 

JO       J2a 

FKPP: 0 = /x^ -f ^ + TpAOil - 9) 

„„-.^   „       d9     cP9    ^  ^       r     Ze(l-9) 
2^^= « = '^Si + 5^ +^^^-P [-l-a(l-V 

g(l-g) 
1 - a(l - 9) 

(2.2o) 

(2.26) 

where space has been nondimensionalized hy ip (e.fi., ^ = Z/£F) and time by Tp. With 
hindsight (Williams 1985; Clavin 1994; Kolmogorov et al. 1937), for TpA = 1/4 in (2.2a), 
/i = 1 and for TpA = 26^/2 in (2.26), /x = 1 - O (1/Ze) with Ze » 1 and a « 1. Here, 
a = 1 - ©u/©{, is the heat-release parameter and Ze = a©a/©6 is the Zeldovich number 
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FIGURE 2. Tm-bulent premixed flame regime diagram (Bray h Peters 1994; Peters 2000) showing 
isolines of the various nondimensional numbers: vl JSL = Re {L/£F)~^, U'/SL — Da~ {L/ip), 
and u'IsL = Ka?'^{L/lFY'^ = Ze*/*Ka^/^(L/^F)'''^ Of course, with respect to the defini- 
tions of the Re and Da (and Ka = Ze^Ka« = Re'''^Da~'), the regimes must be identical for 
the two cases. However, physical and semantic differences are to be distinguished for Ka > 1 
(Damkohler's small-scale turbulence Umit) between the two cases. For the ZFK case, the ad- 
ditional regime of thin reaction zones (Peters 1999) is also a flamelet regime for the present 
one-step chemistry case (see discussion in section 3.2.) 

(Williams 1985). In dimensional units, s = ip/Tp = SL (for the laminar case) are 

FKPP:    SL V 
1/4 

and ZFK:    SL^JV 
ZeV2 

(2.3) 

for the FKPP and ZFK cases, respectively. 
Figure 1 shows the laminar flame structure for the FKPP and ZFK solutions. In subplot 

(ii), and in all subsequent calculations throughout the paper, a = 0.85 and Ze = 8. As 
is well known, for the ZFK case the large Ze >> 1 confines the chemical source term 
to an inner reactive-diffusive zone of width £s ~ 0(^F/Ze), resulting in a convective- 
diffusive balance within the outer zone (of thickness £p). For the FKPP case, a single 
convective-reactive zone dominates the entire flame thickness, as seen in figure 1 (i). 

2.2. The turbulent premixed flame 

Figure 2 reviews the various regimes of turbulent premixed combustion (Bray & Peters 
1994; Peters 2000). We ignore the 'Svell-stirred reactor" regime in both cases, as simple 
models already exist for this regime. Recall the definitions 

ReSc = and       Da = 
L/u' 

V TF 

which delineate the various regimes of turbulent premixed combustion. Here, u' is the tm:- 
bulent velocity scale. Note that a single Damkohler number can be defined irrespective of 
the complexity of the chemistry (multiple chemistry times) by using the flame time. Unity 
Schmidt number is assumed (Sc = 1). The so-called "wrinkled flamelets" regime, where 
u' < SL, is also ignored. The remaining regimes then include the "thin reaction zones" 
(Peters 1999), broken reaction zones (formerly "distributed reaction zones" (Bray &c Pe- 
ters 1994)) and "corrugated flamelet" regimes which are divided by the unity Karlovitz 
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number line. Recall the definition of the Karlovitz number, Ka = Tp/Tj,, where T,, is 
Kolmogorov's inner turbulence time scale. Following Peters (1999), for the ZFK case, the 
zone between 1 < Ka < Ze^ defines the regime of thin reaction zones. For the FKPP case 
and Ka > 1, the broken reaction zones regime is a distributed combustion regime. For 
either the ZFK or FKPP case, Ka < 1 is referred to as the corrugated flamelets regime 
(see figure 2). 

The Karlovitz number is important as it distinguishes the scaling in Damkohler's small- 
and large-scale turbulence Mmits for another set of validation studies which predict the 
St/u' scaling with Da. Recall that, in Damkohler's small-scale turbulence limit, T] < £F 

{Tr, < Tp or Ka. > 1) and the small-scale turbulence will modify the laminar flame, 
structure. Employing an eddy diffusivity argument, St ~ \JVtA which follows from (2.3) 
with constant Pf or by dimensional analysis. Thus, it readily follows, with Re = Pt/P, 
that 

^ ~ Dai/2. (2.4a) 
u 

This scaling is expected to be valid for the ZFK case (assuming the Kolmogorov eddies 
to be larger than is = ipfZe, the diffusive-reactive zone thickness). This is because eddy 
diffusivity successfully describes transport when convective-diffusive processes dominate. 
However, the scahng is questionable for the FKPP case as the leading-order solution, with 
or without all higher-order corrections, reveal an ever dominating convective-reactive 
balance. 

In Damkohler's large-scale turbulence limit, T] > £F (Tlj > Tp or Ka < 1) and the 
laminar flame structure is preserved on average by definition. Due to this separation 
of the laminar flame and turbulence scales, the enhanced transport will be dominated 
by turbulence rather than reaction. This is because enhanced transport by turbulence 
is generally much more effective than enhanced transport due to chemical reaction and 
diffusion. A purely "kinematic scaling" is thus expected with St/u' then independent of 
Da (more precisely, the unmodified characteristic flame time): 

St ~ u'. (2.46) 

Recall that the BML model (Bray k Libby 1994) is strictly valid in Damkohler's (very) 
large-scale turbulence limit only: It follows that foi rj » ip, the details in the laminar 
flame structure are unimportant and a composite delta function PDF representation of 
the premixed flame would be sufficient. 

3. Results and discussion 

3.1. Laminar premixed flame 

As a queuing process, incorporating Fickian diffusion by random walks in (2.1) is a 
straightforward extension of the stochastic chemistry algorithm. For simplicity, assume 
a uniformly-discretized grid of spacing Ax. Define the random variable At on the Ihs of 
(1.3) as (At)chem, the random time increment to the next reaction event. Then, the time 
increment to the next reaction or diffusion event is given by the random variable 

At = min{(At)diff, (At)chem.} (3.1) 

With Tdiff = (Ax)^/P/2 taken to be a deterministic time-of-arrival of a random walk 
(Feller 1970), (Af)diff is the remaining time to the next random displacement event. For 
the uniform grid spacing and a given V, Tjiff is independent of i. Thus, random walks are 
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FIGURE 3. Typical realizations 
from the Monte Carlo simu- 
lations of the laminar FKPP 
and ZFK premixed flames. Solid 
lines are the simulation results. 
For the (i) FKPP case, the 
two solutions are between 20 
nondimensional time units t/Tp 
with dash-dash lines from de- 
terministic, finite-diflferenced so- 
lutions. For the (ii) ZFK case, 
between 5 nondimensional time 
units with dash-dash lines from fi- 
nite-difiFerenced solutions. 

applied at every grid point every TUB. Update of the species populations follow the jump 
process as described by the stochastic chemistry algorithm at every grid point. Values of 
the species populations can be converted to and from concentrations via van Kampen's 
system size. For example, the initial (intrinsic) concentration, 6{x), are converted to 
extrinsic (integer) values, M, for every subvolume. Ax, following M = round{fi x 9}, 
where Q, = npAx and np{x) is the number of particles in a cell. Sensitivity to the system 
size, or Up for fixed Ax, is described below. 

Figure 3 compares the Monte Carlo simulation results to the exact and approximate 
flame solutions for the FKPP and ZFK cases, respectively. Qualitatively, the Monte 
Carlo simulations are in good agreement with the deterministic solutions for the flame 
structure. Defining a single realization as a simulation with duration of approximately 
10 Tf, a quantitative assessment can be made using flame-speed calculations. 

For numerical simulations of a reaction-diffusion wave (Monte Carlo or otherwise), a 
practical measure of the flame speed is first required. One can be derived by integrat- 
ing the governing equations in lab coordinates firom a reference position in the burnt 
region, Xb say. Leibniz's rule gives ^ /~ Qdx + ^0b = /~ Sdx, where Xb is sufficiently 

upstream from the flame that {d&/dx)xt = 0 holds. Since s = / Sdx, it follows that 

£ r Qdx (3.2) 

for a flxed x;,. Thus, s{t) can be estimated by the local time derivative ot jQdx = H{t). 
At "steady-state", characterized by a constant wave speed, H{t) will be linear and s given 
by its slope. Note, this is valid for calculating the flame speed for both the laminar case 
(s = SL) and the flame speed for a turbulent 9 field (s —> St) along the mean direction of 
propagation, also denoted by x. For the latter case, although pedagogically misleading, 
we refer to St as a "tiu:bulent flame speed". (The definition of st and its distinction from 
s for the turbulent case is described later in section 3.2.) 

For Monte Carlo simulations, convergence of the statistical errors from the flame speed 
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FIGURE 4. Monte Carlo statistical errors 
with the number of realizations, rir, for the 
laminar flame speed calculated from (3.2). 
The figure shows three sets of calculations: 
Up = 10^ (dash-dot line), 10^ (dash-dash), 
and 10^ (solid line). The FKPP case is 
shown. Results for the ZFK case are com- 
parable. 

calculation procedure can be gauged using the £2 error estimator 

C2fJi = 
'' 1    "r > 

fc=i 

1/2 

where C^fJ, is a function of n^, the number of realizations, and /x^*^) = s^''^ Tp/tp is the 
nondimensional flame speed for the fc-th realization calculated using (3.2). 

Figure 4 shows the convergence of the statistical errors with Up (with Ax fixed) and 
rir for the laminar flame-speed calculation procedure. For a fixed and sufficiently large 
Ur, the figure just shows the well-known l/nj scaling of the Monte Carlo statistical 
errors. For a fixed system size, the figure shows that the flame-speed calculation procedure 
requires only a few realizations to reeich the asymptotic error at n^ » 1. The figure 
can be interpreted as follows: The flame-speed calculation procedure jdelds less than, for 
example, a 5% error using Up ~ 10^ and rir > 10, or Up ~ 10^ and n,. > 1, etc. 

3.2. Turbulent premixed flame 

Kerstein's linear-eddy variant (Kerstein 1991 a, 6) of his one-dimensional turbulence con- 
cept is incorporated with the stochastic chemistry and mixing algorithm of section 3.1. 
This is straightforward as the advective stirring processes are already represented by a 
queuing process through the triplet mapping procedure. Define the Poisson random vari- 
able (At)stir as the next time-of-arrival of each eddy or mapping event. Then, the time 
increment to the next reaction, molecular diffusion, or advective stirring event is given 
by the random variable 

At = min{(At)stir, (Af)diff, (Af)chem}, (3.3a) 

where (At)diff and (Af)chem have been defined with regard to (3.1). 
The resulting one-dimensional turbulent premixed flame model is an abstraction. How- 

ever, the expected qualitative features of the tmrbulence-chemistry interaction are repro- 
duced by the Monte Carlo simulations. Figure 5 shows typical realizations of the flame 
structure in Damkohler's small- and large-scale turbulence limits in subplots (i) and (ii), 
respectively, for the FKPP reaction-diffusion wave. Single realizations are shown by the 
solid lines; the ensemble average summed over 10^ realizations at the same time are 
shown by the dash-dash lines. In both subplots. Re = 100. In subplot (i), Da = 5, and in 
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(ii) Large-scale: Ka < 1 

FIGURE 5. Typical realizations 
from the Monte Carlo simulations 
of the turbulent FKPP premixed 
flame. SoUd lines are the simula- 
tion results; dash-dash lines are 
ensemble averages of 10^ real- 
izations at the same time. Tur- 
bulent transport is modeled us- 
ing Kerstein's linear eddies. The 
corresponding laminar results are 
shown in figure 3. In both figiures, 
Re = 100. In subplot (i), Da = 5 
(hence Ka = Re^^^/Da. = 2); 
in subplot (ii), Da = 50 (hence 
Ka = 0.2). 

subplot (ii), Da = 50. Thus, in subplot (i), Ka > 1 and the smallest turbulent eddies will 
modify the laminar flame structure since r] < ip- This is clearly observed in the single 
realizations (solid Hnes) of figure 5 (i). Figure 3 (i) shows the corresponding laminar case. 
In figure 5 (ii), Ka < 1 and the turbulence does not modify the laminar flame structures. 
Preservation of the laminar flame scales is visibly apparent upon comparing the single 
realizations (soUd lines) in figure 5 (ii) with the corresponding laminar case in Fig. 3 
(i). The qualitative features of the turbulence-chemistry interaction for the ZFK case are 
similar. 

The expected quantitative results for the "turbulent flame speed" are also reproduced 
by the stochastic model. Figure 6 shows the turbulent flame speed calculated using (3.2) 
over a range of Damkohler numbers, for the ZFK reaction-diffusion wave. Each point 
represents a single realization; big dots are the conditional (on Da) average. '%" is used 
to distinguish this average from the "5" of each realization from figure 3.2. The unity 
Karlovitz number fine is demarcated by the bold dot-dot fine. Subplot (i) shows on log- 
log scale the subset of reafizations in subplot (u) for which Ka > 1. For Ka > 1 (77 < £F), 

subplot (i) shows that the modefing predicts the expected St/u' dependence on Da as 
given by (2.4a) for Damkohler's small-scale turbulence fimit. For Ka < 1 (7/ > ip), 
St/v! becomes independent of Da for increasing Da, validating the model in Damkohler's 
large-scale turbulence fimit as weU. 

We note in passing the increasing scatter of s with Da in figure 6. For a given Da 
bin size, the number of realizations axe too large for the observed scatter to be solely 
due to statistical error. FoUowing the analysis of the statistical errors for the flame- 
speed calculation procedure in the previous subsection, the statistical errors would only 
account for a small fraction of the scatter (even for a Da bin size which includes only 10 
realizations). Physically, the increasing scatter in s/u' with Da is to be expected since, 
for flxed Re, the increasing range of turbulent length scales would create an increasing 
variation in the s "measurements" taken at the same time amongst an increasing number 
of realizations. Evidently, the intermittency effects on s, also observed in experimental 
data, are captured by the present modefing. 

To introduce the less-computationally-expensive Taylor diffusion model into the sim- 
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FIGURE 6. Scaling of st/u' with Da in Damkohler's small- (Ka > 1) and large-scale (Ka < 1) 
turbulence limits for the ZFK premixed flame. A subset of the same data in subplot (ii) is 
shown in subplot (i), which shows Damkohler's small-scale turbulence scaling of St/u' ~ Da'''^ 
for Ka > 1. Recall that Da Ka = Re^^^ 

ulations in place of Kerstein's linear eddy model, consider the ZFK case in Damkohler's 
small-scale turbulence limit, whose scaling is given by (2.4a). Representing the classic en- 
gineering approach, the main motivating idea behind Taylor diffusion here is to reproduce 
the turbulent flame-speed scaling directly without performing multiple realizations for a 
fixed Da. This scaling is thus trivially reproduced by simulating a "laminar" flame but 
with the molecular diffusivity replaced by an "eddy diffusivity". In other words, instead 
of using (3.3a), turbulent and molecular transport can be simulated together following 

At = min{(At)™ix, (At)chem,} (3.36) 

which is analogous to (3.1) but with V in (Af)diff replaced by Pt = Re X> for (At)inix- 
Equation (2.3) then gives the turbulence enhanced flame speed, st, and so the scaling 
given by (2.4o) is trivially reproduced (although without intermittency). It is interesting 
and useful to ask what is lost with the faster computations resulting from replacing Tstir, 
the range of turbulent timescales, and Tdiff by Tmix alone (besides losing the true scatter in 
the turbulent flame-speed predictions)? It is argued that this question is equivalent only 
to asking: When is the regime of thin reaction zones a true flamelet regime? Consideration 
of the limitations of Taylor diffusion for the corrugated flamelet regime yields a simple 
transported PDF model for turbulent premixed combustion valid in both Damkohler's 
small- and large-scale turbulence limits. 

For the regime of thin reaction zones, consider again the ZFK case with one-step 
chemistry. Recall that Taylor diffusion works when advective and diffusive processes are 
unmodified by reaction. That reaction does not directly impact the enhanced convective- 
diffusive transport in the modified preheat zone is guaranteed by the high activation 
temperature (Ze >> 1) of the reaction. This is because, with the one-step reaction, only 
temperatures between (1 — 1/Ze) < 6 < 1, which have a low probability of occurance 
in the modified preheat zone under the defined restrictions, will lead to a non-negligible 
reaction rate. Thus, only convective-diffusive effects remain important outside the inner 
reactive-diffusive boundary layer. This is clear for the present one-step chemistry case. 
For multi-step chemistry, assume that Tchem? the range of chemistry timescales, and Tdis 
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yield a well defined flame time scale irrespective of the modified preheat zone. Taylor 
difi'usion would thus be valid so long as the inner zone remains intact. The repercussions 
of this assumption being valid are significant. For example, consider the transported PDF 
model of Pope & Anand (1984), where the combined contributions from the diffusion and 
chemical source terms in the transported PDF equation for a reacting scalar, i) say, are 
modeled together by a known function h{-^). In Damkohler's large-scale turbulence limit 
then, /i(V') is the response of the convection term of the steady planar laminar premixed 
flame and is known ahead of time for a given chemical kinetic scheme. Extension to 
the thin reaction zones regime can simply be done by parameterizing h{ip) -> /if(V') by 
T> -> Vu where ht{'il)] Vt) would be pretabulated in practice for an expected range of Vt- 
It is no surprise that such a tabulation over a "parameter" governed by the large scales 
can be performed if the thin reaction zones regime is a flamelet regime. 

In the corrugated flamelet regime, the less computationally-expensive algorithm rep- 
resented by (3.3&) will obviously give the wrong scaling for the turbulent flame speed. 
This is of minor concern, as St/u' changes Uttle with large Da due to the weak Da ' 
dependence in Damkohler's small-scale turbulence limit. (Of major concern would be the 
neglect of the increasing level of s fluctuations with Da.) Or, if this regime is of prac- 
tical interest, and the transition between Damkohler's small- and large-scale turbulence 
limits can be neglected, the above tabulation procedure can readily be modified to yield 
a unique ht{i); Vt) = h{-^) for all values of Vt above a threshold value. (Of coiurse, the 
effect of the largest fluctuations in s, which occur in the large-scale limit, would also 
have to be negligible as well.) Certainly, semi-empirical or purely empirical correlations 
for St/u' from a given application can also be used to pretabulate ht{rp; Vt) as well, since 
St can be related to X>f A semi-empirical correlation for St/u' has been developed and 
applied by Peters (1999) to convect a level-set surface representing the inner reaction 
zone. If intermittency effects must be accounted for, the present transported PDF model 
with Taylor diffusion becomes questionable as it incorrectly assumes that the turbulent 
flame speed (or turbulent diffusivity) is a well-defined, physical quantity. 

4. Conclusions and future work 

Currently, transported PDF methods of turbulent combustion discount the flame struc- 
tures which can modify the umresolved mixing processes. Accounting for flamelet combus- 
tion in micro-mixing models for turbulent nonpremixed combustion is described in Cha 
& Trouillet (2002a,6). Here, for the premixed case, enhanced molecular transport due to 
reaction as well as turbulence must be accounted for. Pope k Anand (1984) have treated 
turbulent premixed combustion in the corrugated flamelet regime by a transported PDF 
method; here, their method is extended to the "thin reaction zones" regime (Peters 1999). 
In the thin reaction zones regime, the characteristic laminar flame scales are modified by 
the turbidence, but the inner layer reaction zone and turbulence scales remain separated 
due to a large activation energy. Neglecting intermittency effects, this allows the turbu- 
lence broadened preheat zone to be described by eddy diffusivity and hence the response 
of the flame structure to the turbulent mixing processes to be pretabulated for a given 
chemistry scheme in practice. 

For distributed combustion, the interaction with the range of chemistry time scales 
must be accounted for and the issue of computational feasibility of transported PDF 
modehng arises if detailed kinetics are required. The stochastic chemistry algorithm of 
Bunker et al. (1974) and Gillespie (1992) is extended to treat transport to help off- 
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set the significant computational demands required for describing complex chemistry in 
transported PDF methods. Molecular and turbulent transport are integrated into the 
stochastic chemistry algorithm as queuing processes. For simplicity, a freely propagat- 
ing premixed flame driven by a one-step chemical reaction is considered. Two nonhnear 
source terms, with and without high activation energy and referred to as the FKPP and 
ZFK cases, respectively, define two representative nonconservative systems for model 
investigation and validation (see (2.2) in this paper). 

For the laminar cases, results from the Monte Carlo simulations are compared to exact 
deterministic, finite-differenced solutions and vaHdate the approach for molecular trans- 
port and transport by eddy difi'usivity. For the turbulent case, Kerstein's one-dimensional 
turbulence concept is used to incorporate the entire dynamic range of turbulent motions 
in the more general, but more computationally-expensive, model. (The model is gen- 
eral because it can be applied without ad hoc knowledge of the regime.) The resulting 
simulations are able to reproduce the expected scalings in Damkohler's small- and large- 
scale turbulence limits. Results, not presented here, also show good agreement with the 
experimental data sets of Abdel-Gayed & Bradley (1981) and Bradley et al. (1992). If 
intermittency effects can be neglected, Taylor diffusion represents a less physical, but less 
computationally-expensive model of turbulent transport. The ZFK case exemplifies an 
ideal scenario where the thin reaction zones regime is a flamelet regime on average and 
Taylor diffusion modehng of transport is valid. In contrast, distributed combustion oc- 
curs in the FKPP case when the smallest turbulent scales interact with the characteristic 
flame scale. 

In immediate futmre work, the general algorithm represented by (3.3a) can be applied 
to study distributed combustion. Results for the FKPP case, not presented here, yield 
a counter-intuitive, reaction independent St/u' ~ Da^^^ scaling (as the Taylor diffusion 
model would yield by definition)! In other future work, the computational savings which 
result from using stochastic chemistry can be spent on multi-step chemistry and/or multi- 
dimensional simulations. For example, describing local sources/sinks by a queuing process 
offers a straightforward means of incorporating chemical reaction in cellular automata or 
lattice Boltzmann simulations. 
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Comparison of turbulent premixed flames at 
different turbulence levels 

By Laurent Duchamp de Lageneste AND Heinz Pitsch 

1. Introduction 
In the flamelet regime, turbulent combustion is characterized by a reaction-zone thick- 

ness much smaller than the Kolmogorov length scale (Peters 2000). Thus the internal 
flame structure remains unaffected by turbulence, and can be approximated by a thin 
interface separating burnt from unburnt gases. 

An equation describing the dynamics of such a surface has been presented in Williams 
(1985) and is now known as the C?-equation. It is based on the flamelet assumption and 
uses the general level-set methodology described in detail in Sethian (1996) and Osher 
& Fedkiw (2002). Variants of this model have been used in conjunction with Reynolds- 
averaged Navier-Stokes models (RANS) (Peters 2000; Herrmann 2000) or large-eddy 
simulation models (LES) (Smith & Menon 1997; Kim & Menon 2000; Chakravarthy & 
Menon 2000; Sankaran & Menon 2000; Duchamp de Lageneste & Pitsch 2001). 

Pitsch & Duchamp de Lageneste (2002) have formulated a level-set method based on 
the G-equation for LES of premixed turbulent combustion in which a specific filtering 
procedure respecting the particular symmetries of the G-equation (Oberlack et al. 2001) 
has been used. 

As a validation of the model and to demonstrate the benefits of LES in turbulent 
combustion modeling, we report in the present paper on the LES of two Bunsen flames, 
the F3-flame and the F2-flame from the series of experiments by Chen et al. (1996). 
These flames are nominally in the regime of thin reaction zones (Peters 2000) but F2, 
which has a higher turbulence level and hence a higher Karlovitz number, is closer to the 
regime of distributed reaction zones than F3. 

After briefly recalling the main equations used in the level-set modeling of premixed 
turbulent combustion, we will compare results from the simulations to the experimental 
data of Chen et al. (1996). As a first step, results from the cold-flow simulations wiU be 
presented to ensure that adequate boundary conditions are used in the LES. This cold 
flow will also be used as a validation of the flow solver as well as a reference computation, 
to be used later to assess the abihty of the LES to captiure flow changes due to combustion. 

We will then present and discuss results concerning the reacting cases, where time- 
averaged quantities such as axial velocity, turbulent kinetic energy and temperature will 
be compared to the data of Chen et al. (1996). 

2. Level-set method 
We briefly recall here the main equations and models involved in the level-set LES 

of premixed turbulent combustion. The derivation and discretization of this method is 
discussed in detail in previous reports. In the following equations, all symbols denote 
filtered quantities unless otherwise noted. 
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The level-set equation (or G-equation) for LES is written as: 

^ + U.VG=^(sT-A«)iVG|, (2.1) 

where U is the convection velocity, ST the turbulent burning velocity, pu the unburnt 
density, and K the curvature. 

An algebraic model similar to the one derived for RANS by Peters (2000) is used for 
the turbulent burning velocity: 

ST-SL ^       C^H    A 
SL 2biSctn h 

( c^hi y 
\2hiSct,G) SLIF 

(2.2) 

where A is the filter width, £>t = Cu^v'^/Sct^c the turbulent diffusivity computed with a 
constant turbulent Schmidt number of Sct^c = 0.5 according to Pitsch & Steiner (2000), 
v'^ being the turbulent velocity fluctuation, and SL and Ip the laminar burning velocity 
and flame thickness respectively. The constants 6i and 63 are evaluated by Peters (2000) 
as 61 = 2.0 and 63 = 1.0. 

In the case where dilution or partial-premixing effects are to be considered, an equation 
for the conserved mixture fraction Z is also solved together with an equation for the 
reduced temperature 6 = {T — Tu)/{Tb — T„). If heat losses are included in the model, 
an equation for the enthalpy H is also used. These equations are: 

'dt 
p^+pU.VZ = ^. ipDfVZ), (2.3) 

86 
p- + pv-ve = v-{pDfve) + pu>, (2.4) 

and: 
QTJ 

p— + pV.VH = ^. ipD^VH). (2.5) 

On the burnt side, the temperature is given as a function of Z and its subgrid variance 
by pre-computing a laminar flamelet Ubrary similar to the one classically used in non- 
premixed combustion (Peters 2000). Although, since an equation for the temperature is 
already solved, it may seems redundant to use an extra equation for the enthalpy, H 
is used only as a parameter in the generation of the flamelet Ubrary to take possible 
heat losses into account. On the unburnt side, the temperature is simply given by the 
solution of (2.4). Hence, (2.4) is really only solved in the unburnt region, with the burnt 
temperature evaluated from the flamelet library acting as a boundary condition at the 
flame surface. 

In order to distinguish between burnt and unburnt regions, the probability of burning 
Pb = PG>GO is defined using an assumed PDF approach. Assuming a Gaussian sub-filter 
distribution for G, this PDF is given by: 

,00 j (G-O 21 

2G"2 
d^. (2.6) 

The filtered source term appearing in (2.4) is expressed as: a; = Pb{6 — BfiameUt), thus 
setting the temperature to the value prescribed by the flamelet library (Bfiameiet) on the 
burnt side while vanishing on the unburnt side. 

All subgrid quantities such as the subgrid variances Z"^ and G"^ or the turbulent 
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FIGURE 1. LES regime diagram. The non-dimensional filter width is plotted as a function of 
the Karlovitz number. The areas covered by the values of the parameters computed along an 
instantaneous flame surface for F2 and F3 are shown as rectangles. 

diffusivities Dt'^'^ axe computed using the dynamic approach developed by Moin et al. 
(1991) and Pierce & Moin (1998). 

3. Numerical simulation 

3.1. Experimental setup 

Flame F2 and F3 are turbulent Bunsen flames, studied experimentally by Chen ei al. 
(1996). The experimental setup is the same in both cases, and consists of an axial- 
symmetric central jet of diameter D = 12 mm surrounded by a large pilot flame. A 
stoichiometric mixture of methane and air is used for the central jet as well as the pilot 
flame. The whole apparatus is surrounded by air at rest. 

The mean exit velocity of the central jet is different in each case, with UQ = 50 m/s for 
F2 and UQ = 30 m/s for F3. Experimental data are available for the cold flow as well as 
the reacting flow at different downstream stations. 

Chen et al. (1996) have shown that both flames are mainly in the regime of thin 
reaction zones. This is confirmed by showing in figure 1 the values of the non-dimensional 
filter width and corresponding Karlovitz number computed along an instantaneous flame 
surface for F2 and F3. The rectangles in figure 1 are used to represent the area covered 
by the parameter values in both cases, and F2 is shown to have on average a higher 
Karlovitz number than F3. 
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3.2. Grid and boundary conditions 

We use the structured code developed at CTR by Pierce k Moin (2001), in which the 
low-Mach-number approximation to the Navier-Stokes equations is solved using a second- 
order finite-volume scheme on a staggered cylindrical grid. 

The computational domain extends 20D downstream of the nozzle and 4D in the 
radial direction. The grid of 256x96x64 nodes corresponds to approximately 1.6 million 
cells, and is refined around the wall separating the central jet from the pilot in the radial 
direction. 

Convective boundary conditions (AkselvoU 1996) are prescribed at the outlet, while 
instantaneous profiles, obtained from a separate, fully-developed turbulent pipe flow LES, 
are prescribed at the central jet inlet. The surrounding pilot is considered to be a laminar 
inflow with a prescribed mean velocity, computed using the mean mass-flow rate given 
in the experiment. 

Before discussing the results, a few remarks concerning the experimental results and 
their subsequent consequences on our modeling assumptions are worth making: 

• In the experiment, the pilot nozzle consists of an array oflF small jets issued through 
a cooled perforated plate (1175 holes of 1mm in diameter), forming a flat flame above 
the plate's surface. This configuration leads to heat losses at the plate surface which are 
modeled in the simulation by choosing an appropriate enthalpy for the fluid issuing from 
the pilot to give the correct temperature distribution at the first measurement station 
downstream of the nozzle, which is located at x/D = 0.25. 

• While the inlet profiles used in the simulation of the central jet are those of a fully 
developed pipe flow, experimental data close to the inlet section show that the flow may 
not be fully developed. Nevertheless, it will be shown that these differences are small and 
are unimportant further downstream. 

• Since the only diff^erence between F2 and F3 is the mean velocity of the central jet, 
the only parameter that has been changed in our simulations is the Reynolds number. 

4. Results and discussion 

In this section we present some comparisons between the results from the LES and the 
experimental data reported by Chen et al. (1996). In particular, we discuss predictions 
of mean quantities such as mean axial velocity or temperature, as well as turbulent 
quantities Uke the turbulent kinetic energy and tiurbulent flame-brush thickness. 

We first focus briefly on cold-flow results before presenting a more detailed study of 
reacting-flow simulations. 

4.1. Cold flow 

In this section, we compare some of the LES results for the non-reacting flows with 
corresponding experimental data. The purpose of this comparison is twofold: 

• It serves as a validation of the flow solver, insuring that grid and boundary conditions 
are properly chosen, 

• By comparing the cold-flow results with reacting-flow results presented below, the 
data will be used to assess the abiUty of the LES to capture flow changes generated by 
the combustion process. 

4.1.1. Mean axial velocity 

Figure 2 shows a comparison between computed (solid lines) and measured (symbols) 
radial profiles of mean axial velocity at two downstream locations. As expected, the 
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FIGURE 2. Cold flow. Radial profiles of mean axial velocity. Solid lines denote the LES results, 
symbols denote experimental data. Stations: x/D = 2.5 (left) and x/D = 6.5 (right). 

experimental data shows the spreading of the jet corresponding to the development of 
the lateral shear layers. The end of the potential core is observed at roughly x/D = 4.5, 
and the maximum mean velocity decreases from thereon as the jet expands in the radial 
direction. 

The LES captures these effects very accurately. Some discrepancies in the maximum 
jet velocity can be seen at the first station and indicate that our assumption of a fully 
developed pipe flow at the inflow may not have been fully realized in the experiment. 
Nevertheless, these small discrepancies vanish further downstream and do not seem to 
affect the accuracy of the results. 

With proper non-dimensionalization, very little difference can be observed between F2 
and F3, underlining the self-similar development of the jets. 

Overall, the agreement between the LES and the experimental data is very good. 

4.1.2.  Turbulent kinetic energy 

Figure 3 shows radial profiles of turbulent kinetic energy for the same downstream 
locations as in the previous section. These profiles also show the radial spreading of the 
lateral shear layers surrounding the central jet and it can be seen that radial mixing 
increases, both outwards and inwards, with distance from the nozzle. In particular, the 
increase of turbulent kinetic energy close to the centerUne indicates the merging of the 
lateral shear layers and thus the end of the potential core. It is to be noted that the 
peak turbulent kinetic energy is constant up to xjD = 6.5 and that, again, no significant 
differences can be observed between F2 and F3. 

The results extracted from the LES capture the downstream evolution of the turbulent 
kinetic energy with very good accuracy. 

4.2. Reacting flow 

In this section, results firom the LES of flames F2 and F3 are compared to experimental 
data from Chen et al. (1996). Comparisons are shown between cold and reacting flows, 
but also between the two reacting flows, to assess the ability of the LES to predict not 
only the impact of combustion on the flow field but also the changes with Reynolds 
number. 
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FIGURE 3. Cold flow. Radial profiles of turbulent kinetic energy. Solid lines denote the LES 
results, symbols denote experimental data. Stations: x/D = 2.5 (left) and x/D = 6.5 (right). 
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FIGURE 4. Reacting flow. Radial profiles of mean axial velocity. SoHd lines denote the LES 
results, symbols denote experimental data. Stations: x/D = 2.5 (left) and x/D = 6.5 (right). 

4.2.1. Mean axial velocity 

Figure 4 shows radial profiles of the mean axial velocity at the two downstream stations 
x/D = 2.5 and x/D = 6.5. Results for flame F2 are on the left side while those for F3 
are on the right. Symbols represent experimental data, solid lines the numerical results. 

A first interesting comparison can be made between figure 4 and figure 2 concerning the 
ability of the LES to capture the effect of heat release on the mean flow pattern. In this 
respect, the experimental data show that the presence of combustion has qualitatively 
the same effect on the mean velocity profiles for both flames: 

• radial profiles are broadened because of the divergence of the mean streamlines due 
to gas expansion, 

• the maximum velocity observed around the centerline stays approximately constant 
up to the axial position where the fuel is almost completely consumed, showing an ex- 
tension of the potential core in the reacting case. 

These significant differences between cold and reacting cases are particularly apparent 
if one compares figure 4 to figure 2 for the downstream station x/D = 6.5. It can also be 
seen in these figiures that the LES reproduces these effects accurately. 

We will now focus on the specific differences between the two reacting cases. The main 
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FIGURE 5. Reacting flow. Radial profiles of turbulent kinetic energy. Solid lines denote the LES 
results, symbols denote experimental data. Stations: x/D = 2.5 (left) and x/D = 6.5 (right). 

difference from the experimental data is the apparent larger broadening of the axial 
velocity profile iii the F3 case compared with F2. This phenomenon can be observed at 
both stations and is well predicted by the simulation. It is consistent with the lower jet 
exit velocity for F3, leading to a relatively faster flame. F3 being shorter than F2, its 
angle with the burner is smaller and leads to a wider spreading of the jet. 

The overall quantitative agreement between computation and experiment is good, 
although one can observe in figure 4 a sUght overprediction of the jet spreading rate in 
both cases. An explanation for this discrepancy will be given in section 4.2.3. 

4.2.2. Turbulent kinetic energy 

Figure 5 displays radial profiles of turbulent kinetic energy at stations x/D = 2.5 and 
6.5 and can be compared to figure 3. Large differences can be observed between the cold 
and the reacting cases. 

First, the turbulent fluctuations are greatly reduced in the reacting case due to the 
increased viscosity and the dilatation caused by the heat release. This is especially ap- 
parent at x/D = 2.5, where the peak intensity was found experimentally to be reduced 
by 58% for F2 and 75% for F3 compared to the cold case. This trend is well reproduced 
by the simulation although to a slightly higher extent as reductions of 66% and 77% are 
observed for F2 and F3 respectively. 

Furthermore, computational and experimental results shown in figure 3 show an in- 
creasing turbulent kinetic energy close to the centerhne for the cold case, but figure 5 
shows relatively constant levels for both reacting cases. This indicates that the shear 
layer surrounding the jet are deflected outward in the reacting cases due to heat release, 
extending the potential core up to the axial position where most of the fuel is consumed, 
and therefore prevents radial mixing. 

In addition, it was noted in section 4.1.2 that turbulent kinetic energy levels for the 
cold cases were relatively constant up to x/D = 6.5. In contrast, the peak intensity 
computed in the LES increases in the downstream direction for both reacting cases, and 
follows the trend observed experimentally, levels for F2 are always higher than for F3. 

It was also reported in section 4.1.2 that no significant difference could be found be- 
tween the F2 and F3 turbulent kinetic energy profiles for the cold cases, whereas results 
and experimental data show large qualitative and quantitative differences for the reacting 
cases. For instance, at the first station x/D = 2.5, the experimental results for F3 show 
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FIGURE 6. Reacting flow. Radial profiles of reduced mean temperature. Solid lines - LES 
results, symbols - experimental data. Stations: x/D = 2.5 (left) and x/D = 6.5 (right). 

that the radial profile exhibits two peaks. The first one, located on the burnt side of the 
fiame, is also observed in the F2 results and increases along the streamwise direction 
whereas the second one, found on the unburnt side, is not observed for F2, and vanishes 
further downstream. This particular behavior is qualitatively well predicted by the LES 
as shown in figure 5. 

While the overall quantitative predictions from the LES are reasonable, figure 5 shows 
that the LES sfightly underpredicts turbulent kinetic energy levels at x/D = 2.5 while 
it overpredicts this same quantity at x/D = 6.5, this trend can be observed for both F2 
and F3. 

4.2.3. Mean temperature 

Figure 6 shows the radial profiles of the mean reduced temperature defined by 

r-r„ e 
Tb — Tu 

(4.1) 

where T^ is the unburnt temperature and Tb the burnt temperature. 
At x/D = 2.5, the most important difference between F2 and F3 reported by Chen 

et al. (1996) is the considerably lower mean temperature observed for flame F2. Whereas 
flame F3 is already found to be at a reduced temperature approximately 25 % lower than 
the adiabatic flame temperature due to heat losses at the burner surface, F2 temperature 
is even lower (about 45%). This difference can be explained by the combined effect of 
heat losses at the burner exit and increased fluctuations of the flame fi:ont. 

As shown in figure 6, LES results for F3 are overpredictions, but still reasonable with a 
maximum discrepancy around 10 % whereas those for F2 show a maximum discrepancy of 
around 25 %. This tendency of the LES to overpredict the mean temperature is consistent 
with the overprediction of the jet spreading rate noted in section 4.2.1, as well as with the 
lower predicted turbulence intensities observed at x/D = 2.5 (section 4.2.2). However, it 
is observed in figure (6 that the predictions tend to become better further downstream, 
such that results at x/D = 6.5 axe in reasonable agreement with experimental data. 
Thus, the major discrepancies observed between our simulations and the experimental 
data of Chen et al. (1996) are found to be confined to the first few diameters downstream 
of the jet exit. 

Since heat losses at the burner exit are taken into account in both simulations and are 



Comparison of turbulent premixed flames at different turbulence levels 99 

lF,t    9 
1   1   ■   1   '—r—'—1—^-1 ■ ■   I   '   1   '   1   '   1 

■ 

F2 : 
- 

. B - 

■ ,   r   ,   1   .   1   ,   1   ,   1 ...-I- 1   1   1   1   .   1 

- 

lF,t 

0 1 2 x/D 
I  ■  I  ■  I  ■  I  ■  I 

- xyD'  '  ' 

FIGURE 7. Downstream evolution of the mean turbulent flame-brush thickness lF,t- Solid lines 
denotes LES, dashed lines experimental results. F2 flame (left) and F3 flame (right). 

not expected to be very different from F3 to F2, we will now focus on the predictions of 
the flame front fluctuations. 

4.2.4.  Turbulent flame-brush thickness 

In Chen et al. (1996), the turbulent flame-brush thickness is defined as a measure of 
the flame-front fluctuations and is computed as 

lF,t dr 

-1 

(4.2) 

Figure 7 shows the values of Ip^t extracted firom the experimental data of Chen et al. 
(1996) at four different downstream stations x/D = 2.5, x/D — 4.5, x/D — 6.5 and 
x/D = 8.5 for flames F2 and F3 compared with the corresponding values obtained from 
the LES. 

It is immediately apparent that the LES underpredicts the turbulent flame-brush thick- 
ness at every station for both flames. If one considers only the results for the flrst station 
x/D = 2.5, it is seen that the experiment predicts an increase of the turbulent flame 
brush of nearly 60% when going from F3 to F2, whereas the LES shows an increase 
closer to 45 %. Thus LES underpredicts the turbulent flame-brush thickness of flame 
F2 by almost 30 %, which could explain the overprediction of the mean temperature at 
x/D = 2.5. A possible reason for this systematic underprediction of the flame-surface 
wrinkling could be the presence of a curvature term in (2.1). This term tends to damp 
any small instability occurring at the flame front. Pitsch (2002) presents a new derivation 
of the G-equation for LES where this curvature term does not appear. Further validation 
of this new formulation with the F2 and F3 cases will assess the impact of the curvature 
on the flame-front wrinkling and is in progress. 

On a more qualitative level, the results shown in figure 7 also show significant differ- 
ences in the downstream evolution of Ip for F2 and F3. While lF,t increases Unearly with 
distance from the burner for F3, it seems to stay constant for F2. This behavior is also 
observed in the LES, and can be linked to the higher Reynolds number of flame F2. 
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5. Conclusions 
This paper presents results from the LES of two turbulent Bunsen flames at differ- 

ent Reynolds and Karlovitz numbers. A level-set method has been used as a model for 
turbulent premixed combustion and comparison are made with the experimental data of 
Chen et al. (1996). As a vaUdation of the flow solver, computations of the corresponding 
cold cases have been carried out and used as references to assess the ability of the LES 
to predict the changes of the flow patterns due to combustion. 

Prom the cold-flow simulations, it has been shown that inflow and boundary conditions 
are properly chosen, and that the flow solver predicts results in very good agreement with 
experimental data. 

Subsequent comparisons of the reacting-flow characteristics have shown that the level- 
set approach is able to reproduce the main characteristics of the turbulent flames studied. 
In particular, the changes in the mean flow pattern due to heat release, such as the 
increased spreading of the jet and decreased turbulent kinetic energy, are well captured. 
Furthermore, the main flow differences between F3 and F2, such as the higher spreading 
rate and lower turbulent kinetic energy of F3 compared with F2, are reasonably well 
reproduced by the LES. 

Nevertheless, mean temperature profiles were shown to be overpredicted in the first few 
diameters downstream of the nozzle, especially for F2. These discrepancies were traced 
to an underprediction of the turbulent fluctuations of the flame front and a possible hnk 
with the presence of a curvature term in the G-equation was suggested. 
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An Eulerian level-set/vortex-sheet method for 
two-phase interface dynamics 

By   M. Herrmann 

1. Motivation and objectives 
Two-phase interface dynamics play an important role in a wide variety of technical 

applications, for example direct injection IC-engines, LOX/H2 rocket engines, or spray 
painting. The dynamics at the interface determine the atomization process, i.e. the pro- 
cess by which an initially-liquid jet or sheet is broken up into individual small drops. This 
atomization process can be the rate-determining factor for combustion processes where 
the fuel and/or the oxidizer are initially in liquid form. The correct physical modeling of 
the atomization process, usually in a turbulent environment, is therefore crucial for the 
overall simulation of such combustion systems. 

The atomization process of liquid jets/sheets is usually divided into two consecutive 
steps, the primary and the secondary atomization. The initial breakup of the hquid 
jet/sheet into large and small structures is called the primary atomization, whereas the 
subsequent breakup of these structures into ever-smaller drops is called secondary atom- 
ization. 

The objective of this paper is to lay down a framework for the development of a Large 
Surface Structure (LSS) model to correctly describe the primary atomization process 
in turbulent environments. To this end, a simplified system of equations describing the 
instantaneous interface dynamics is derived, which forms the basis for the introduction 
of filtering and the derivation of closure models in future work. Coupling of this LSS 
model with both a subsequent spray model, describing the secondary atomization and 
evaporation, and a Large Eddy Simulation (LES) turbulence model will provide a sound 
physical model for the simulation of the entire atomization process. 

In the present work, the simplified system of equations describing the instantaneous 
interface dynamics is derived. Then, the employed numerical methods are presented. 
Finally, the approach is validated by calculating vortex sheets without surface tension, 
the linear regime of the Kelvin-Helmholtz instability, and its long-time behavior. 

2. Governing equations 
To simpHfy the following derivations and discussion, we will hmit omrselves to the 

two-dimensional case. The extension to three dimensions is straightforward. 
The focus of this paper is the motion of the interface T between two inviscid, incom- 

pressible fluids 1 and 2, as shown in Fig. 1. In this case, the velocity on either side 
i of the interface T is determined by the incompressible Euler equations given here in 
dimensionless form as 

V-Ui = 0, (2.1) 

^4-(u,.V)u, = ~Vp, (2.2) 
at Pi 
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subjected to the boundary conditions at the interface F, 

[(ui - Us) • n] 1^ = 0,        [p2 _ pj 1^ = _«, (2.3) 

and in the far field, 

lim   Ui = {±Uoo,0f . (2.4) 
j/—>±oo ^       ' 

Here, n is the vector normal to the interface, We = pref^ref/^-^ref is the Weber number, E 
is the surface-tension coefEcient, p^eu "ref, Iref are reference density, velocity and length 
respectively, and K is the curvature of T. An interface subjected to the above boundary 
conditions is called a vortex sheet; see Saflfeian & Baker (1979). Parameterizing the 
interface location by 

x(a,t)|^ = (ar(a,t),j/(a,t))^|^, (2.5) 

the velocity u at a point x away from the interface is given by 

u(x,*) = fv'{c,t)e. X JLl^iM^da, (2.6) 
Jr |x-x(a,i)| 

where rj* is the unnormalized vortex-sheet strength and e^ is the unit vector in the 
third dimension. The normalized vortex-sheet strength T? defines the jump in tangential 
velocity across the interface T, 

'' = fc = [("2-ui).t] (2.7) 

where t is the interface tangential vector and 

is the arc-length metric. Combining (2.6) and (2.7), u can also be calculated from a line 
integral of the vortex-sheet strength, 

u(x, t)= fnis, t)e, X JiZiSM^d^. (2.9) 
^r |x-x(s,f)| 

2.1. Lagrangian formulation 
Parameterizing the interface by (2.5), denoting by ur the velocity on the interface calcu- 
lated from the principal-value integration of (2.6), and assuming equal densities of both 
fluids, the evolution equation for the interfeice location is given by 

dx 
^ = ur, (2.10) 

drj*       1  dn 
dt  ~Weda' (^••^^) 

Equation (2.11) can be derived by combining the Euler equations (2.1) and (2.2) with the 
boundary conditions (2.3)-(2.4) and the velocity at the interface (2.6); see for example 
Baker et al. (1982); Hou et al. (1994). 

2.2. Eulerian formulation 
Instead of parameterizing the interface T by (2.5), the interface may also be represented 
by the iso-surface of a scalar field G{x,t), as shown in figure 1. Setting 
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Suld 2 

' 

(7>Go 

jw 
G=C?o 

A -fr.::*'-;t"i..- 

FIGURE 1. Interface definition. 

G(x, t)\r = Go = const, (2.12) 

G{x,t) < Go in fluid 1, and G(x,t) > Go in fluid 2, an evolution equation for the scalar 
G can be derived by simply differentiating (2.12) with respect to time and using (2.10), 

f + u.VG = 0. (2.13) 

This equation is called the level-set equation and goes back to Osher & Sethian (1988). 
It is easy to see, that (2.13) is independent of the choice of G away from the interface. 
However, to facilitate the numerical solution of (2.13), G is chosen to be a distance 
function away from the interface, i.e. 

|VG| 
G#Go 

Transforming (2.11) to an Eulerian frame results in 

Making use of the level-set scalar G, the curvature K can be expressed as 

VG 
«; = V-n = V' 

|VG|' 

and the interface tangential vector t and normal vector n are 

J_ /    dyG\ VG 
VG\ \ -9xG ) ' 

n = 

(2.14) 

(2.15) 

(2.16) 

(2.17) 
|VG| V -9xG ) '        "     |VG| ■ 

Strictly speaking, (2.15) has physical meaning only at the location of the interface itself, 
i.e. G = Go, since only there is the surface tension term on the right-hand side defined. 
Again, as is the case for the level-set scalar G, a reinitialization operation for values away 
from the interface should be prescribed. Here, the redistribution condition 

G=Go 

V77* • VG = 0 

: const, in the direction normal to the interface. 

(2.18) 

is used, setting r\* = r\* 

Since (2.9) involves 77 instead of T\* it is useful to derive a transport equation for the 
vortex-sheet strength. To do this, the arc-length metric has to be expressed in terms of 
the level-set scalar G. Following the arguments in Harabetian & Osher (1998), let us 
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introduce a function <j), such that the pair (G, <^) forms an orthogonal coordinate system 
near G = Go, 

<j>{jc{a),t) = a. (2.19) 

Differentiating (2.12) and (2.19) with respect to a and solving the resulting system leads 
to 

dax = J-1 {-dyG, d^Gf , (2.20) 

where J is the Jacobian of {G,(j)), 

J = d:rGdy(l) - dyGd^cf). (2.21) 

Inserting (2.20) into (2.8) and abbreviating a = |VG| results in 
G=Go 

daS = -ryya . (2.22) 

A transport equation for J has been derived by Harabetian k Osher (1998). In the case 
analyzed here, this reduces to 

Q T 

—+ u-VJ = 0. (2.23) 

The evolution equation for cr can be derived by applying the V operator to (2.13) and 
multiplying the resulting equation with n = VG/|VG|, which yields 

0(T «... ,          
— + u • VCT = - (n • Vu ■ n) CT. (2.24) 

Finally, combining this equation with (2.7), (2.15), (2.22), and (2.23) gives, after some 
algebredc manipulations, the transport equation for the vortex-sheet strength TJ 

^ + xi.Vr, = {n.Vn-n)Ti + :^VK-t. (2.25) 

Here, the terms on the left-hand side describe temporal changes and convective transport, 
respectively. The first term on the right-hand side describes the effect of stretching of the 
vortex sheet and the second term accounts for the influence of surface tension. Again, the 
above equation has meaning only at the interface location itself. Away from the interface, 
the redistribution equation 

V77 • VG = 0 (2.26) 

is employed. 
Finally, to close the system of (2.13) and (2.25), the velocity u has to be calculated 

from the vortex-sheet strength 77. Two different approaches can be used to evaluate this 
coupling. First, u can be evaluated by a surface integral according to (2.9). Noting that 
any surface integral along G = Go can be transformed to a volume integral by 

/ f{s)ds = j f{x')S (G(x') - Go) |VG(x')|dx', (2.27) 

where S is the delta function, (2.9) can be rewritten as 

u(x, t)= f 77(x', t)e^ X   ^~^ r,S (G(x') - Go) |VG(x')|dx'. (2.28) 
Jv |x - x'l 

Using the latter formulation has the advantage that no explicit reconstruction of the 
interface location from the level-set scalar field is required. It should be pointed out 
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however that (2.9) and (2.28) are computationally expensive since they involve a surface 
integration volume integration, respectively, for each grid node near the interface. 

Second, following the vortex-in-cell approach, see Christiansen (1973), the velocity u 
can be calculated from a stream function ip, 

u(x, i) = / 6{x - x') {dyi>{x', t), -d^iPix', t)f dx', (2.29) 
Jv 

where ip is given by 

A^ix,t)=u,{x,t), (2.30) 

and the vorticity LJ is 

u{x, t)= f r]*{a, t)5{x - x{a, t))da = f r){s, t)6{x - x(s, t))ds, (2.31) 

see Cottet & Koumoutsakos (2000). Using this vortex-in-cell approach significantly speeds 
up the computation of the velocity u as compared to the integral formulation (2.9) 
respectively (2.28). Employing (2.27) the above relation can be rewritten as 

uj{x, t)= [ ri{x', t)5{x - x')S (G(x') - Go) |VG(x') \dx'. (2.32) 
Jv 

The inclusion of the apparently superfluous integration over a delta function in (2.29) 
is in fact necessary to allow for a consistent numerical spreading operator, (2.32), and 
interpolation operator, (2.29), operator. Again, (2.32) is preferable to (2.31), because no 
reconstruction of the exact interface location is needed. 

To summarize, (2.13), (2.25), and either (2.9), (2.28), or (2.29), form the system of 
equations describing the interface dynamics. 

3. Numerical method 

The system of equations describing the interface dynamics is solved on an equidistant, 
cartesian grid. However, instead of solving the equations everywhere in the whole compu- 
tational domain, a tube approach is employed to significantly speed up the computations. 
Following arguments by Peng et al. (1999), five distinct tubes around the G = GQ level 
set, called the I, Z21 ^„ T and A/" tubes are introduced. A grid node (i, j) lies in a specific 
tube, when 

T if \Gi,j\ < a/Ax 
X2 if lGij|<2ajAx 
B if |Gij|<aBAi (3.1) 
T if JGijl < aj-Ax 
A/" if any (io,io) G T with io e [i - 3,i 4- 3], jo G [j - 3, j -1- 3] 

{hi) G 

with Ax the grid size and typically aj = 4, as = a/ -f- 3, and ar = aB + 3. The use of 
the individual tubes wUl be discussed in the following sections. 

3.1. Convective terms 

The level-set equation (2.13) is a Hamilton-Jacobi equation. In this work, the fifth-order 
WENO scheme for Hamilton-Jacobi equations of Jiang & Peng (2000) is used. A Roe 
flux with local Lax-Priedrichs entropy correction is employed to solve both the level-set 
equation and the convective term of the r) equation (2.25), see Shu & Osher (1989) and 
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Osher & Shu (1991). Integration in time is performed by the third-order TVD Runge- 
Kutta time discretization of Shu (1988). 

Solution of the convective terms is restricted to the 7"-tube, where, as suggested by 
Peng et al. (1999), u in (2.13) and (2.25) is replaced by 

Ucut = c(G)u, (3.2) 

with the cutoff function 

1 
(|G|/Ax - aT)^{2\G\/Ax + ar - Bas) 

c{G) = 
(ar - as)^ 

0 

\G\ < asAx 

asAx < \G\ < axAx   .  (3.3) 

|G| > axAx 

This ensures that no artificial oscillations are introduced at the T-tube boundaries. 

3.2. Source terms 
Both the stretching term and the surface-tension term in the r] equation (2.25) constitute 
simple source terms and are integrated in time within the convective TVD Runge-Kutta 
scheme. Evaluation of the source terms is hmited to the T-tube. 

3.3. Reinitialization 

The reinitialization procedure employed here to solve (2.14) is the one originally proposed 
by Sussman et al. (1994), where the Hamilton-Jacobi equation 

^^g^ + SiH(xX)) (|Vff(x,r)| - 1) = 0,       Xi,,- e N (3.4) 

/f (x, t* =0) = G(x, t) - Go (3.5) 

is solved until 

\\H{x,t')-H{x,t*-An\\^<ei,        Xij€B (3.6) 
with, typically, ci = 10~^AT. In (3.4), S{H) is an approximation to the sign function. As 
pointed out by Peng et al. (1999), the choice of this approximate sign function is crucial 
to minimize undesired movement of the H{x,t*) = Go interface while solving (3.4). Here, 
we will use the approximate sign function by Peng et al. (1999), 

S{H) = ^ (3.7) 

with a second-order central-difference approximation for VH. Equation (3.4) is solved 
by the fifth-order WENO scheme used to solve the convective terms, but employing a 
Godunov flux function instead of the Roe-LLF flux function. Again, the solution in time 
is advanced by the third-order Runge-Kutta scheme. 

Reinitialization is limited to the A/'-tube, which is three cells larger in each direction 
than the T-tube. Peng et al. (1999) proposed an extension of the T-tube by only one 
cell. However, it was found, that this still might introduce fluctuations in the solution. 
The convergence criterium (3.6) is evaluated only inside the B-tube. 

3.4. Redistribution 
The redistribution procedure employed here to solve (2.26) is that described by Chen & 
Steen (1997) and Peng et al. (1999). The Hamilton-Jacobi equation 

^"^^^'P + S (G(x, t) - Go) n(x, t) ■ V7?(x, t*) = 0       x^j € T, (3.8) 
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T?(x,r=0) = r?(x,t) (3.9) 

is solved using a first-order-upwind flux approximation and a simple first-order time 
advancement until 

||<J(G(x,t)-Go)[^(x,r)-T9(x,t*-Ai*)]||oo <e2-|h(x,t = 0)||oo,        x^,,- e 7 (3.10) 

with typically €2 = 10~^. This specific convergence criterion ensures convergence of the 
vorticity w, see (3.17). The sign function in (3.8) is again approximated by (3.7). 

Solution of (3.8) is limited to the T-tube, whereas the convergence criterion (3.10) is 
evaluated only within the I-tube. 

3.5.  Velocity evaluation 

Three different methods, denoted Mi through M3, are used to calculate the velocity u. 
Method Ml is based on the hne integral (2.9), whereas methods M2 and Mz are based 
on the vortex-in-cell approach, employing (2.31) and (2.32) respectively. 

3.5.1. Line-integral formulation 

Equation (2.9) is used to calculate the velocity u at every grid point in the T-tube. 
The problem that the integral can become singular for x(s) —> x is circumvented by 
adding a positive constant 4£^ to the denominator as proposed by Krasny (1986). For 
interfaces periodic in the x-direction, (2.9) can be transformed to 

/ X      1   /"^   /     \ sinh27r(y-y(s,t)) .      , 
u{x,y,t) = -J^   riis,t)^^^^^^^ _ ^^^^^^^ _ ^^^2^^^ _ ^^^^^^^ _^ ^^,ds,   (3.11) 

/        ,     1   /"^   .    , sin27r(x-x(s,t)) .      , 
v{x,y,t) = -J^   vis,t)^^^^2^^^ _ y(s,t)) _ COS2n{x - x{s,t)) + 4e^^''   ^^'^^^ 

see Milne-Thomson (1968). The above equations are solved by first reconstructing the 
location of the interface G = Go in each grid cell containing it. Grid cells containing part 
of the interface are easily identified by 

-11 min Gj.,,-. > Go V max Gj.,,-- < Go ) . (3. 
\i*e[i,i+i],j*e[j,j+i] i*e[i,i+il,j*e[i>J+il / 

13) 

The entry and exit coordinates of the interface into these cells are calculated by approx- 
imating G by cubic splines along the grid lines. The interface shape itself is assumed to 
be a straight Une connecting the entry and exit points in each cell. The integration along 
these fines is performed by five-point Gaussian quadrature, with 77 at the quadrature 
points calculated firom two-dimensional third-order B-splines. This approach to calculate 
the velocity by line integration will be called method Mi. 

The disadvantage of using method Mi is the fact that it is computationally expensive 
and that the interface location must be reconstructed, thus in effect losing one of the 
benefits of the level-set approach. 

3.5.2. Laplace formulation 

In order to solve the Laplace equation for the stream function (2.30), the vorticity at 
each grid point in the computational domain has to be calculated by a numerical version 
of either (2.31) or (2.32). Approximating the 6 function by a smoothed version, the 
vorticity, located solely at the interface location, is in fact spread out to the neighboring 
grid nodes. Hence, this approach is similar to the vortex-in-cell method that spreads the 
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vorticity of Lagrangian vortex particles to their surrounding grid nodes. Quite a number 
of spreading functions have been proposed to this end; see Ebiana & Bartholomew (1996). 
Here we will use 

6{x - x(s)) = 6,{x - x{s))5eiy - y{s)), (3.14) 
S{G{x') - Go) = 6,{G{x') - Go), (3.15) 

with Se as proposed by Peskin (1977) 

Ss{x) = {   ^^^^KT)]    ■   1^1^'   , (3.16) (x) = | 
0   :    |x| > e 

and £ = a/Ax. 
If the vorticity is calculated by (2.31), the integration along the interface is calculated 

in the same way as for method Mi described in section 3.5.1. The above approach will 
be called method M2- 

Using (2.32), called method M3 below, avoids the necessary reconstruction of the 
interface location in method A^2- The integration itself is performed by first evaluating 

fi(x', t) = T,{x', t)5 (G(x') - Go) |VG(x')| (3.17) 

for all cells within the X-tube, and then integrating 

a;(x, t)= f 5,{x- x')fi(x', t)dx'. (3.18) 
Jv 

for all cells within the l2-tube by a simple midpoint rule. 
The Laplace equation (2.30) for the stream function is solved by the package FISH- 

PACK throughout the whole computational domain. 
The calculation of the velocity from the stream function is again a two-step process. 

First, an initial velocity U is calculated at each grid node by simple central-difference 
approximation, 

TT    - fti±tlZjtMzl     i'i+iJ - ■4'i-hjV fo^Q^ 

Secondly, in order to be consistent with the spreading step of the vorticity (3.18), the 
same 6^ and numerical-integration method has to be used in the interpolation step to 
calculate u. 

u(x, t) = f Se{x- x')U(x', t)dx', (3.20) 
Jv 

evaluated within the T-tube. 

4. Results 

Two different cases have been calculated to validate the approach proposed in this 
paper. First, vortex sheets without surface tension were calculated. Secondly, the Kelvin- 
Helmholtz instabihty was calculated both to determine the Unear growth and to evaluate 
the long-time evolution of the interface. 

4.1.  Vortex sheets 
Pure vortex sheets constitute a special class of two-phase interfaces in that they do 
not exhibit any surface-tension forces and thus have constant unnormalized vortex-sheet 
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FIGURE 2. Temporal evolution of the vortex sheet, 256 x 256 grid, method M3, e = SAas. 

FIGURE 3. Vortex sheet at t = 4, 256 x 256 grid, method M3, e = 32Ax (left), e = 16Aa; 
(center), e = 8Aa; (right). 

strength TJ*; see (2.11). An initially-sinusoidal perturbed planar interface exhibits a char- 
acteristic central roll-up region; see Krasny (1986). The initial conditions used here are 
those of Krasny (1986), where the initial shape of the interface 

x{a, t = Q) = a + Aosm 27ra, 

y{a, i = 0) = -{-AQ sin 27ra, 

is represented by the initial G field 

/2-K r 
G(x, t = 0) = j/ - Ao sin f -y- 

with initial amplitude AQ = 0.01, interface length L, and 

rf 

X — AQ sm —a; 
LJ )' 

T7vs(x,t = 0) = 

\\-\-—Y^co5—x-{-1 
I-KAQ       27r 
—=— cos —X 

Li LI 

l2 

(4.1) 

(4.2) 

(4.3) 

(4.4) 

with 77* = 1. Calculations were performed in a 1 x 1 box on an equidistant 256 x 256 
cartesian grid with periodic boundary conditions at the left and right, and slip walls at 
the bottom and top. 

Figure 2 shows the temporal evolution of the vortex sheet with £ = 8Aa; and velocity- 
calculation method M.^. Similar to the findings of Krasny (1986), reducing the spreading 
factor £ generates ever more turns in the central core region, while retaining the outer 
shape of the roll-up region; see figure 3, where e is reduced from £ = 32Aa; down to 
£ = SAx. The maximum number of possible turns is limited by the single-valued nature 
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FIGURE 4. Growth rates iii for 128 x 128 (left) and 256 x 256 (right) grid and method M.\, 
e = 0 (o ); Mu e = 4Ax (D ); M2, e = 4Ax (A); M3, £ = 4Ax (V), and linear theory (line). 

of the level-set scalar; since no two interface fronts may exist in the same grid cell, 
automatic merging and hence pinching will occur. The number of turns generated in the 
central core region is less than those achieved by Krasny (1986) with a vortex-blob method 
or Tryggvason (1989) with a vortex-in-cell method, but is comparable to those reported 
by Harabetian et al. (1996) and Peng et al. (1999) using a level-set-based approach. 

4.2. Kelvin-Helmholtz instability 

4.2.1. Linear growth 

Calculations of the linear growth rate of the Kelvin-Helmholtz instability are initialized 
by the sinusoidal perturbed planar interface (4.3) and a modified distribution of vortex- 
sheet strength taking the effect of surface tension into account, 

n{x,t = 0) = /3(r^s(x,t = 0)-ri*) + T)* , (4.5) 

where /3 is chosen such that the initial normal-velocity profile at G = Go calculated by 
method Mi and £ = 0 is that of the linear solution; see Chandrasekhar (1961). The 
boundary conditions are those of the vortex-sheet calculation. 

Figure 4 shows the calculated growth rates w, 

w ■■ - /    w{t)dt, 
H Jo 

(4.6) 

for an initial amplitude of AQ = 0.0001 for both the 128 x 128 (left) and the 256 x 256 
(right) grid case. Here, ti is chosen to be either ii = 1 or, for larger Weber numbers, 
the time when smaller wavelengths start to visibly pollute the linear solution. Although 
the calculated growth rates are generally less than linear theory predicts, the agreement 
between linear solution and numerical simulation is good. The calculated growth rate 
is smaller due to the spreading operation of the vorticity in methods M2 and M3, and 
the de-singularization of the surface integral in method Mi, respectively. Setting the 
de-singularization factor to £ = 0 for method Mi (circles) shows excellent agreement 
with the linear solution. Setting £ = 0 is viable here, since for t <ti the interface does 
not come close to a grid node, thus the firactions in (3.11) and (3.12) stays finite. 

4.2.2. Long-time evolution 

Figure 5 shows snapshots of the interfsice for the long-time evolution of the Kelvin- 
Helmholtz instability for Weber numbers We = 100 and We = 400. Here, a 128 x 256 grid 
for a box of size 1x2 was used with the same boundary conditions as for the vortex-sheet 
calculation. 
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FIGURE 5. Interface at t = 2.5, 5, and 7.5 for We = 100 (top) and 400 (bottom), method Ma- 

The results obtained are similar to those reported by Hou et al. (1997) who used a 
vortex-point method. As can be seen in the We = 400 case, pinching events occur and 
drops are formed. 

5. Conclusions and ftitiu-e work 
An Eulerian level-set/vortex-sheet method has been presented that allows for the cal- 

culation of two-phase interface dynamics taking surface-tension effects into account. This 
method shows good agreement with the linear theory of Kelvin-Helmholtz instability and 
is able to automatically handle complex topology changes of the interface, such as pinch- 
ing and merging. Future work will extend the method to three dimensions, include the 
effect of different fluid densities, and introduce a coupling to an ambient turbulent ve- 
locity field. The presented method lays down a framework for the derivation of a Large 
Surface Structure model of the primary atomization interface dynamics in turbulent flow 
fields. The derivation of closure models for filtered versions of the equations presented 
will also be the focus of future work. Coupling of the presented method with a subsequent 
spray model for secondary atomization and evaporation will be achieved by combining 
the level-set approach with a transport equation for a volume of fluid scalar. Finally, 
coupUng with an LES turbulence model will yield a consistent approach describing the 
complete atomization process, suitable for engineering appUcations. 
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1. Motivation and objectives 

The laxge-eddy simulation (LES) approach is used to simulate the combustor of the gas 
turbine engine. LES was chosen because of its demonstrated superiority over RANS in 
predicting mixing, which is central to combustion. The combustor simulations have two 
major components - gas phase and sprays. The gas phase part of the project has devel- 
oped a parallel, unstructured grid LES solver which has now been completely integrated 
with the spray module. As discussed in previous reports (Mahesh et al. 2000, 2001) the 
gas phase solver is non-dissipative and discretely conserves energy, thus insuring both 
accuracy and robustness for high Reynolds number simulations in complex geometries. 
A djTiamic procedure is used to compute the coefficients in the additional terms that 
are present in the filtered momentum and scalar-transport equations. The objective of 
this work is to develop unstructured mesh technology for LES of reacting flow (including 
spray physics) in realistic configurations using massively-parallel computing platforms. 

2. Accomplishments 

Our progress in the last year was as follows: 
• The gas-phase solver was made fully implicit, resulting in a significant overall speed- 

up for both non-reacting and reacting flow simulations. Overall reduction in CPU time 
is between six and ten. Compared to the expUcit code, the time step is larger by factors 
of 10 - 20 while the increased overhead is 1.5 - 3.5. 

• Development of a geometric multigrid approach to solving the Poisson equation was 
initiated and preliminary tests were completed. 

• The cold-flow simulations in the complex Pratt & Whitney combustor and the firont- 
end validation model that were initiated last year were completed. The LES results axe 
shown to predict experimental data considerably better than RANS. 

• Extension of the gas-phase solver to the reacting, variable-density, low-Mach-number 
equations was completed. The progress-variable approach of Pierce & Moin (2001) is used 
in the reacting-flow calculations. The LES module was rewritten to reduce memory use. 
Also, the CPU time per time step of the reacting module was reduced from approximately 
25 % of the total to about 10 - 15 %. 

• Validation of the low-Mach-number algorithm used for variable-density flow simula- 
tions was initiated. Comparison to the coaxial jet methane combustor of Spadaccini et 
al. (1976) is under way. PreUminary results show good qualitative agreement with the 
numerical simulations performed for the same conditions by Pierce & Moin (2001). 

t Aerospace Engineering Euad Mechanics, University of Minnesota 
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• Reacting-flow simulation using Jet A fuel in the complex Pratt & Whitney combustor 
geometry has been initiated. Extensive validation data is available for this test case. 

• Validation simulations of particle-laden swirling flows in a coaxial combustor ge- 
ometry (Sommerfeld Sz. Qiu 1991) were completed, obtaining good agreement with the 
experimental data. 

• A spray-atomization methodology for use with the Lagrangian schemes was devel- 
oped. The secondary-breakup phenomenon is modeled to predict spray characteristics 
such as droplet distribution, penetration depth and spray angle. 

• A novel hybrid approach involving tracking of individual droplets and parcels of 
droplets was developed to reduce the computational cost while retaining the essential 
dynamics of spray evolution. 

• Validation of the secondary breakup model was performed and effectiveness of the 
hybrid scheme was demonstrated in a simplified combustor geometry. 

• Validation of the spray-breakup model in Pratt & Whitney's front-end validation 
geometry was initiated. 

• The combustor code was christened CDP in memory of the late Dr. Charles David 
Pierce who made several lasting contributions to the LES of reacting flows. 

3. Implicit algorithm 
As described in last year's progress report, the gas-phase solver used the exphcit 

second-order Adams-Bashforth method to advance the equations in time. Algorithmic 
developments in the gas-phase solver emphasized spatial discretization, which resulted 
in the development of a non-dissipative, energy-conserving formulation in the absence of 
time-discretization errors. This explicit algorithm was successfully used to demonstrate 
the accuracy of the flow solver in both simple and exceedingly complex geometries such 
as the Pratt & Whitney combustor. 

Last year, the gas-phase solver was sped up considerably by allowing the use of larger 
time steps. This was achieved by making the time advancement fully implicit. The need 
for implicit time-advancement was felt because numerical stability restrictions imposed 
by the Adams-Bashforth method were restricting the time step in the coaxial combustor 
simulations to be an order of magnitude less than the time step used by Pierce & Moin 
in their structured grid computations that treated the viscous terms implicitly. Also the 
simulations performed in the front-end model showed that the narrow passages in the fuel 
injector considerably accelerate the flow, and, as a result, the convective terms impose 
strict restrictions on the time step for an explicit scheme. 

The second-order Crank-Nicolson scheme is used for both convection and viscous terms. 
The convection terms are linearized prior to solution. The implementation is such that the 
viscous terms alone can be implicitly advanced if so desired. At present successive over- 
relaxation is used to solve the implicit system. Typically 20 - 100 iterations are needed 
to converge the residuals. The use of multigrid techniques to solve the impUcit system 
is under consideration. Results for some typical calculations are summarized in table 1. 
The savings are seen to be significant. For example, explicit calculation of the cold flow in 
a coaxial geometry required 320 hours x 96 processors = 30,700 CPU hours on an IBM 
SP3 machine. The implicit code uses about 5,000 CPU hours, which is approximately a 
factor of four larger than the time taken by the highly-optimized structured-grid solver 
of Pierce & Moin which uses the same time step. The structured solver is of course 
incapable of handling geometries as complex as the Pratt & Whitney combustor. The 
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Grid 

(10^ cvs) 

Processors 

Coaxial combustor (Sommerfeld) 

Turbulent channel Rcr = 180 

Pratt & Whitney combustor 

Explicit 

(CPU hours) 

Implicit 

(CPU hours) 

1.6 96 

0.9 32 

1.4 32 

30700 

2240 

13500 

5000 

256 

3200 

TABLE 1. CPU time in hours for the the explicit and implicit solvers. 

above ratio of implicit to explicit time step also applies to the reacting-flow simulations. 
Reacting calculations of the Spadaccini experiment using the explicit solver would require 
about 600,000 CPU hours on an IBM SP3 machine, while the implicit solver requires 
approximately 70,000 CPU hours. This cost is comparable to that of a structured code 
(the physical time steps were identical and corresponded to a CFL number between 
0.5 and 1.0) which required ~ 50,000 CPU hours on the ASCI RED machine. Further 
significant reduction of the CPU time in the unstructured LES code is expected, once a 
multi-level multigrid solver for the pressure and momentmn equations in the predictor 
step of the fractional-step algorithm is implemented. 

The calculations in complex geometries show significant speed-up due to the impUcit 
algorithm. The time taken for the cold-flow calculations in the full Pratt & Whitney 
geometry is very reasonable (3,200 CPU hours, or about 100 wall-clock hours when the 
job is run on 32 processors). However, computations in the front-end model are still 
expensive (110,000 CPU hours) in spite of the implicit algorithm speed-up by a factor 
of six. This is because the time step is now Umited by accuracy; it is Umited by the 
high flow speeds through the channels of the three swirlers. In normalized terms, the 
time step at which the calculations are being currently run are the same as that for the 
simple coaxial combustor. The high cost for the front-end model is therefore the price 
paid by unsteady simulations in general (including unsteady RANS) and is not peculiar 
to LES. We are presently investigating the exact requirements of grid resolution and 
quality inside the injector region such that the time step could be increased without 
compromising accuracy. 

4. Combustion model implementation in the unstructwed code 

In this section we present the motivation behind using the flamelet / progress-variable 
combustion model developed by Pierce & Moin (2001), together with an overview of their 
method, including the equations and the algorithm to calculate the subgrid momentum 
and scalar transport terms and its implementation in the unstructured code. Pierce & 
Moin's approach is based on "quasi-steady" flamelets in which the local flame state 
undergoes unsteady evolution through a sequence of stationary solutions to the flamelet 
equations. 

A single-parameter flamelet library is first developed for the given combustor conditions 
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by looking for stationary solutions to the one-dimensional reaction-diffusion equations. 
The unstable and the lower branches of the S-shaped curve are included so that the 
complete range of flame states, from completely extinguished (mixing without reaction) 
to completely reacted (equihbrium chemistry), is represented in the library. Arbitrarily 
complex chemical-kinetic mechanisms as well as differential-diffusion effects can be in- 
cluded. The result is a complete set of flame states, given in terms of mixture fraction 
and a single flamelet parameter, denoted by A: 

yk = yk{Z,X),    T = T{Z,X),    p = p{Z,X),    Wk=Wk{Z,X). (4.1) 

where t/fc are the mass fractions of the chemical species, T is the temperature, p the 
density, Wk are the reaction terms in the scalar transport equation for the chemical species 
and Z is the mixture fraction. One of the combustion variables, or some combination of 
the variables that is representative of the overall flame behavior, is chosen to serve as an 
overall reaction progress variable. 

In this model in addition to the variable-density momentum and continuity equations 
( 4.2) and (4.3), scalar-transport equations are solved for the mixture fraction Z, which 
is a conserved scalar (4.4), and for the progress variable C, which is a non-conserved 
scalar (4.5): 

^ -F V • ipnu) = -Vp -f V • [2M(S - |I V • U)]  , (4.2) 

V-(pu)=:-|, (4.3) 

^ + V-ipnZ) = V-ipaVZ), (4.4) 

^ -F V • (pnC) = V • (paVC) + pwc . (4.5) 

In the above equations, S is the strain-rate tensor, I is the identity tensor, /x is the 
molecular viscosity, a is the molecular diffusivity and wc is the chemical-reaction source 
term. 

The continuity equation acts as a constraint on the velocity field, with the time deriva- 
tive of density as a source term. This constraint is enforced by the pressure, in a manner 
analogous to the enforcement of the incompressibiUty constraint for constant density 
flows. 

Under the model assumptions, all the other fluid and flow variables (density, tem- 
perature, molecular viscosity, molecular diffusivity), chemical species and the reaction 
source terms in the scalar-transport equations are related to the mixture fraction and 
the progress variable through a flamelet library that is precalculated, given a specific fuel 
reaction mechanism and the flow conditions in the combustor. The only requirements for 
the quantity chosen to serve as progress variable are that it is representative of the overall 
gross flame behavior and that it varies monotonically with the flame state so that its 
value uniquely determines it. For instance, in the reacting-flow simulation of methane-air 
combustion in a coaxial jet combustor discussed below, the progress variable is chosen 
as the product mass fraction C = j/cOj + ya^o (Pierce & Moin 2001). 

For turbulent simulations, the governing equations (4.2) to (4.5) are filtered. A major 
modeling requirement is for the nonlinear density function p obtained by filtering the 
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state relation for the density p in (4.1). While algebraic scaling laws and scale-similarity 
concepts can be expected to work for quadratic nonhnearities, the only acceptable clo- 
sure for arbitrary nonlinearities appears to be the probability density function (PDF) 
approach. Here, the presumed subgrid PDF is used: 

T^ = Jp-\Z,X)PiZ,X)dZdX (4.6) 

In addition, the filtered progress-variable equation contains a reaction source term wc 
that must be closed. This is accomphshed by writing 

wc= jwc{Z,X)P{Z,\)dZdX (4.7) 

and assuming that 

P{Z, X) = 5{X - Xo) ■ /3{Z, Z, W^) . (4.8) 

That is, each subgrid state is represented by a single flamelet. For conserved scalars such 
as mixture fraction, the subgrid PDF is modeled using the beta distribution which is 
a reasonable assumption in the absence of further information about the subgrid state 
(Wall et d. 2000). The final step is to relate AQ to the filtered value of the progress 
variable, C, that is obtained by solving the corresponding transport equation: 

C = j C{Z, X)P{Z, X)dZdX. (4.9) 

After substitution of the presumed PDF and integrating, this yields 

C = f{Z,Z^,Xo) (4.10) 

If C is a monotonic function of A, then the above relation can be used to eliminate AQ 

from the problem. The final result is a closed specification of the chemical system and 
ftiel_properties (molecular viscosity and molecular diffusivity) in terms of three variables 
Z, Z"^ and C, which are chosen as the input variables in the chemical table for turbulent 
calculations: 

yk = yk{Z,Z"^,C),    T = T{Z,Z"^,C),    p = p{Z,Z"^,C) ,    Wk = Wk{Z,Z^^,C) . 

(4.11) 

fi = fx{Z,Z^,C),    a = a{Z,Z^,C). (4.12) 

The subgrid mixture-fraction variance Z"^ is obtained using the method proposed by 
Pierce & Moin: 

pZ^ = CzpA^\VZ\^. (4.13) 

where the coefficient Cz is calculated dynamically. The subgrid momentum and scalar 
transport terms that appear from the filtering of (4.2), (4.4) and (4.5) must be modeled. 
The eddy viscosity (Xt and eddy diffiisivity at that appear in these terms are evaluated 
as follows: 
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FIGURE 1. Computational domain in the a; - y symmetry plane, z = 0, with contours of the in- 
stantaneous absolute value of the velocity field for the flow in the Pratt & Whitney fuU-combustor 
geometry in the same plane 

fjit - C^pA''\S\ (4.14) 

pat Cc^pA^i (4.15) 

where the coefficients C^ and CQ are calculated dynamically. 
All the operators in the scalar-transport equations are discretized in a similar fashion 

to that used in the momentum equations. 
Finally, we describe the approach for the calculation of the coefficients in the expres- 

sions of the subgrid scalar variance, eddy viscosity and eddy diflFusivity in the filtered 
momentum and scalar transport equations. It is well known that the prediction of nega- 
tive values for the dynamically-calculated coefficients {C^,, 0^ and Cz) coupled with the 
long time correlation of these coefficients can cause instability of the numerical solution. 
Negative values of these coefficients can predicted by the dynamic procedure, especially 
in regions of high gradients and skewed meshes, two conditions that are often met in cal- 
culations of very complex turbulent flows using hybrid unstructured meshes. The usual 
way to avoid this problem is to clip these coefficients, so that the sum of the molecu- 
lar and eddy viscosity (diffusivity) will remain positive. However, in our implementation 
we propose a more robust implementation, based on Germano's identity, in which the 
usual expression is used to compute the coefficients in the region where the predicted 
values for these coefficients are positive (e.g. C^A2=0.5 < Li^jMij > / < Mk,iMk,i >), 
while in regions where the least square is negative, by contracting Germano's identity 
with itself one obtains C^A^ = 0.5V< Li,jLij > / < Mk,iMk,i >■ The other advantage 
of using this approach is that it eliminates the need for averaging the terms of the form 
< LijMi,j >, an operation that is generally needed to improve robustness. In an un- 
structured environment this operation is not trivial, even for problems in which the flow 
is homogeneous in one or two directions. Moreover, we are primarily interested in calcu- 
lations of complex flows in which there are no homogeneous directions. Though several 
methods like Lagrangian averaging (Meneveau et al. 1996) were proposed to address this 
problem, the typical solution is to apply a locally-defined filter on the field of the coni- 
puted values C^. Using the present approach to compute the coefficients in the dynamic 
procedure, we found that this step was not necessary. 
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Location 

OD dilution hole 

ID dilution hole 

Core (main swirler) 

Second (OD) swirler 

Third (Guide) swirler 

LES Error LES Error RANS Error 

% wrt expt. % wrL inlet % wrt expt. 

3.1 0.8 11.4 

3.5 0.5 7.5 

10.3 0.14 8.4 

7.5 0.35 13.5 

0.4 0.02 18.9 

RANS Error 

% wrt inlet 

3.2 

1.1 

0.11 

0.63 

0.84 

TABLE 2. Comparison of mass-flow spUts in the Pratt & Whitney fuU-combustor geometry 

5. Cold-flow simulations in the Pratt & Whitney geometry 

5.1. Complex comhustor 

Last year's report documented flow-visualization results from cold-flow calculations in 
the complex Pratt & Whitney combustor geometry. These computations were extended 
to include the effects of flow bleed and transpiration and detailed comparisons with exper- 
iment were made for mass-flow spUts and pressure drop. The geometry in the symmetry 
plane 2 = 0 together with contours of the absolute value of the velocity field are shown 
in figure 1. The Reynolds number in the pre-diffuser inlet section, defined with the bulk 
velocity in the inlet section and a characteristic length scale L = 1", is about 500,000 
while it takes a value of about 150,000 in the main (core) swirler channel. Turbulent 
fluctuations from a separate calculation, in a periodic pipe sector of shape identical to 
the pre-diffuser inlet section, are fed in at the inlet. In the experiment, fuel is injected at 
the tip of the downstream part of the injector. The mass-flow rate for the fuel is matched 
in our simulation. 

Interestingly, the RANS and LES predictions for the pressure drop across the diff'erent 
components of the combustor are very close (within 6,000 Pa for 5 out of the 6 stations). 
However, as shown in table 2, LES does a better job overall in predicting the mass- 
flow spUts through the swirlers and the inner and outer dilution holes. LES predictions 
are within 10.5% of the experimental measured values for the mass splits through the 
swirlers, but more importantly within 4% for the total discharges through the swirlers, 
inner and outer dilution holes. The errors as a percentage of the total inlet discharge are 
much lower. 

5.2. Front-end model 

Cold-flow simulations were performed in the Pratt & Whitney front-end test-rig geome- 
try. This geometry has the same fuel injector and combustion chamber as the complete 
combustor, but air is fed to the injector through a cyhndrical plenum, the inner and outer 
diffuser channels are absent, and the main combustor chamber does not have dilution 
holes on the surrounding walls. The interest in simulating the flow in this geometry is 
the availabiUty of detailed LDV velocity-profile measurements in the main combustion 
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FIGURE 2. Fine-grid LES solution for the front-end rig geometry; Contours of the instantaneous 
streamwise velocity component (a) in the x — y symmetry plane (z=0), (b) in a plane containing 
the main swirler synmietry axis, perpendicular on the z = 0 plane, and at several downstream 
locations (c) x = 1.1", (d) x = 2.2", (e) x = 3.4" 

chamber, which can be used to fully validate the accuracy of our solver for a geometry of 
complexity comparable to the full combustor. The Reynolds number in the main swirler 
channel of the injector is close to 100,000. 

The complexity of the geometry and flow inside the test rig is illustrated in figure 
2 which shows some sections of the computational domain along with contours of the 
streamwise velocity in the symmetry plane (z=0), in a plane containing the main swirler 
sjnnmetry axis, perpendicular to the z = 0 plane, and at several downstream locations, 
X = 1.1", X = 2.2" and x = 3.4" from the injector, for the statistically-steady solution 
obtained on a fine mesh. The main feature observed in these plots is the formation of a 
relatively large recirculation region downstream of the injector, due to the swirUng jet 
coming out firom the injector into the main combustor chamber. 

Prediction of the correct dimensions of the recirculation region, together with the 
variation of the jet width with distance from the injector, are two of the main challenges 
in simulating this flow. In particular, RANS calculations of this flow, conducted both 
at Pratt & Whitney using an in-house K — e code and at Stanford using a commercial 
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FIGURE 3. Coaxse-grid LES solution; Contours of the instantaneous streamwise velocity 
component in the x — y symmetry plane (z = 0) 

FIGURE 4. Comparison between fine-grid LES, coarse-grid LES, RANS (FLUENT) and experi- 
ment (Pratt & Whitney) for the gas-phase velocity (streamwise, radial and swirling components) 
in the Pratt &: Whitney combustor at three stations situated at x = 0.4", x = 1.1" and a; = 2.1 
downstream of the injector 

software (FLUENT), failed to predict these quantities correctly away from the injector, 
though they were fairly successful in predicting all three velocity components immediately 
downstream of the injector. This is evident from comparison of the RANS profiles with 
the experimental data symbols in Fig. 4. Interestingly, the Pratt & Whitney RANS 
simulation was able to capture the pressure drop across the injector within 2%, while 
FLUENT yielded a much bigger error (~ 20%). This is attributed to diflFerent grid 
densities inside the injector. 
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Two grids were generated in the present LES simulations: a coarser grid containing 
about 2.2 million control volumes and a finer containing about 4.5 million control vol- 
umes. Contours of the instantaneous streamwise velocity component are shown in figures 
3 and 2a for the solutions obtained on the two grids at a statistically steady state. Though 
for the simulation on the coarser mesh the prediction of the mean pressure drop across 
the injector (4588 Pa) was found to be very close to the experimental value (4500 Pa), 
the agreement with the experimental data for the velocity profiles was not much better 
than the results obtained from RANS calculations. In particular, the spreading of the jet 
away from the injector was substantially underpredicted. This can be seen by comparing 
the streamwise velocity profiles at the downstream station x=2.1" from the injector in 
figure 4. The reason for this is that insufiicient grid resolution causes the (conical) de- 
tached shear layers, which are initially shed at the correct angle from the injector (this is 
expected because all models do a fairly good job in predicting all the velocity components 
immediately downstream of the injector), to curve toward the injector centerline, due to 
a too-high rate of decay of azimuthal momentum inside the initial region of these layers. 
This results in a much smaller recirculation region compared to the fine grid solution (see 
figure 2) where the detached shear layers are seen to extend up to the lateral walls of 
the main combustor chamber. The angle between the injector axis and the conical shape 
corresponding to the detached layers is approximatively constant at 55°. The shedding 
of vortex tubes due to the Kelvin-Helmholtz instabihties in the detached shear layers 
is clearly observed. The fine-grid solution in figure 2 displays the right features corre- 
sponding to the fiow in the test-rig geometry at the specified conditions. This also results 
in better quantitative predictions for the velocity profiles (see figure 4), especially away 
firom the injector where, as clearly observed in the mean streamwise velocity profile at 
X = 2.1" from the injector, the level of agreement between the LES fine-grid solution and 
the experiment is clearly superior to the one observed for the RANS or the LES coarse- 
grid solutions. However, some differences between the experiment and the fine-grid LES 
results remain (e.g. compare the streamwise velocity profiles at the x = 1.1" station). 
These differences may occur because the flow is under-resolved in some regions. We plan 
to address this by performing one additional calculation on a very fine mesh (14 million 
cells). 

6. Multigrid solution of the pressure-Poisson equation 
In the present unstructured LES solver, the conjugate-gradient (eg) solution of the 

pressure-Poisson system is the most computationally-expensive component of the overall 
solution process, requiring from 50 to 80% of the total solution time. In this section we 
present some details of a multigrid solver for this Poisson system that will eventually 
replace the present eg solver. Tests using a single coarse grid (1-level multigrid) have 
demonstrated an overall reduction in computation time of 35 to 60% per time step. 
Once fully implemented, the pressure solver should become one of the least expensive 
components of the solution process, jdelding reductions in overall computation time of 
45 to 75% per time step. 

6.1. Background 
Multigrid methods are used extensively in the numerical solution of partial differential 
equations. They can exhibit an optimal complexity in terms of both work and storage 
— i.e. both work and storage scale linearly with problem size. They can also achieve 
very good parallel efficiency and scalability by the method of domain decomposition. For 
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standard multigrid methods involving point-relaxation smoothers and isotropic coarsen- 
ing, however, the convergence factor is known to degenerate dramatically in the pres- 
ence of coefficient anisotropy. Coefficient anisotropy can result from large cell aspect 
ratios, anisotropic material properties, or asymmetric operators. In the present case the 
anisotropy is primarily geometric, caused by the grid stretching used to resolve high- 
Reynolds number boundary layers. 

In a effort to make multigrid methods more robust, several solutions have been pro- 
posed to this problem. Most of these solutions involve some combination of the following 
two ideas: 1) the use of semi-coarsening, where the coarsening is not isotropic, and 2) 
improvements to the smoother so that both high- and low-frequency components of the 
residual distribution are effectively reduced in at least one or two directions (i.e. the so- 
called hne and plane smoothers of structured-grid methods). When the semi-coarsening 
and/or smoother improvements are properly matched, multigrid methods recover their 
optimality, even in the presence of strong coefficient anisotropies. 

6.2. Proposed multigrid method 

The multigrid method currently being integrated into the unstructured LES solver has 
the following characteristics: 

• V-cycle multigrid with Unear restriction and block correction. 
• Multi-color Gauss-Seidel smoothing on all grids except the coarsest; on the coarsest 

grid, the residual is reduced by approximately one order of magnitude using a coarse grid 
version of the present eg solver. 

• Coarse-grid control volumes are built by the agglomeration (sometimes called aggre- 
gation) of fine grid control volumes. The agglomeration procedure is performed once per 
computation, when the pressure solver is first called. Agglomeration avoids use of mesh 
generators to generate the coarse grids, and simphfies the restriction and prolongation 
operators. 

• Directional agglomeration (semi-coarsening) is used to prevent stalling of the multi- 
grid method in the presence of large cell aspect ratios and the resulting coefficient 
anisotropy. At present, a greedy-type algorithm is used, similar to that described by 
Raw (1996) and EUas et al. (1997). 
Other authors have solved the coefficient-anisotropy problem by using uniform coarsen- 
ing, combined with Hne-implicit smoothing in the direction of greatest coefficient strength 
(Brandt et al. 2002, Mavriphs & Pirzadeh 1999). WhUe effective for certain problems, Une- 
implicit smoothing combined with uniform coarsening will not yield an optimal multigrid 
method in general (Montero et al. 2001). 

• Coarse-grid coefficients are calculated using the discretized coarse-grid approxima- 
tion (i.e. geometric multigrid). Algebraic multigrid with first-order restriction (insertion) 
of the fine-grid coefficients was tested and foimd to yield significantly slower convergence 
rates. Algebraic multigrid with higher-order restriction was not considered because of 
the increase in bandwidth (neighbor connections) associated with coarser grids. 

6.3. Results 

A two-grid version of this multigrid method has been added to the parallel unstructured 
LES solver and tested on a number of problems, including the coaxial combustor (1.1 
million control volumes, 32 processors). Figure 5 compares the normalized wall-clock 
time per time step for this problem, breaking out the pressure solver firom the other 
components of the solution (scalar equations, momentum equations, chemistry, etc.). For 
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FIGURE 5. Normalized breakdown of total computation time for three different Poisson solvers: 
coaxial combustor problem with 1.1 million control volumes on 32 processors. 

the coaxial-combustor problem, the pressure solution requires about 50% of the total 
solution time when the present eg solver is used. 

The one-level multigrid solver is able to converge the pressure equation to the same 
tolerance in about 10 to 12 cycles: however each cycle is significantly more expensive 
than a fine-grid eg iteration, so the actual speed-up in pressure solution is about 2.7 
times, corresponding to a reduction in overall solution time of about 30%. Most of the 
computational cost in this one-level multigrid is associated with the coarse-grid eg itera- 
tions, where 100 or more iterations may be necessary to reduce the coarse-grid residual 
by one order of magnitude. Extrapolating this demonstrated two-grid performance to 
multiple coarse grids, the speed-up in the pressure solution should be about 10 times, 
corresponding to a reduction in overall solution time of about 45% for this problem. 

Figm:e 6 compares the convergence history of the the pressure solver for these three 
cases. The histories are plotted relative to "equivalent eg iterations", proportional to wall 
clock time. 

7. Towards generating very large unstructured grids 

In the framework of ASCI, the generation of unstructured meshes is carried out using 
the commercial software GAMBIT and the research code CUBIT (developed by Sandia 
National Laboratories); the former is usually preferred because it provides a more user- 
friendly interface. Grids ranging from one to five milUon elements have been produced 
for the geometries discussed above. At present, we simulate a 20° sector of the Pratt & 
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8 

equivalent eg iterations 

FIGURE 6. Comparison of pressure convergence history for three different Poisson solvers: 
 present eg solver; 1-level multigrid; full multigrid (estimate); coaxial com- 
bustor problem with 1.1 million control voliunes on 32 processors. 

Whitney combustor. Future simulations are planned that incorporate the entire combus- 
tor. In order to provide sufficient resolution for a geometry as complex as the Pratt & 
Whitney combustor, substantially larger meshes have to be generated. Grid generation 
is currently carried out on SGI workstations, and the largest grid that can be handled 
(because of the memory limit of 8 GB on these machines) is about 8 millions elements. 
There are two approaches that can be followed to overcome this limitation. The first 
is to generate a coarse grid and then subdivide all the elements along meridian planes: 
from a hexahedral eight smaller homothetical hexahedrals can be constructed splitting 
all the faces in four (halving the edges); similarly from one tetrahedra four hometical 
tetrahedrals can be generated (see figure 7). 

This procedure can be easily performed on a multiprocessor machine. A subset of 
elements is assigned to each processor and the splitting is carried out independently. 
The major drawback of this process is inaccuracy in the representation of the physical 
boundaries of the domain. Notice that the splitting of an element requires the generation 
of an additional node on each face and on each edge. Consider a tetrahedra! grid in a 
spherical volume; the boundary (spherical surface) is approximated by a tessellation of 
(planar) triangles. The accuracy of this representation can be evaluated by considering 
the distance between the circumcenter of each triangle and the spherical surface; finer 
grids correspond to higher accuracy. If the splitting procedure discussed above is used, 
refined grids will have the same acciuracy (in representing the spherical surface) as the 
initial coarse mesh. The only way to improve the accuracy would be to project the nodes 
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FIGURE 7. Grid generation by element splitting 

FIGURE 8. Subdomain-based grid generation 

created by the splitting on the "real" boundary surface. The result is that to perform this 
procedure it is necessary to access the CAD representation of the computational domain 
and carry out projection operations for all the elements belonging to the boundaries. 
Therefore it is required to access to the CAD modules in GAMBIT with its related 
memory hmitations. Note that neglecting this final boundary-fitting step produced highly 
distorted geometry representations in regions of high surface curvature. 

The second approach consists in dividing the computational domain in subdomains 
(blocks); the surfaces between blocks are meshed first, and then fine grids (up to the 
desired resolution) are constructed independently (see figure 8). A simple (and intrinsi- 
cally parallel) code can be written to merge together all the block grids without using 
GAMBIT and therefore without memory limitations. Initial tests of this second approach 
are encouraging. 

8. Reactmg flow sunulations in a coaxial combustor geometry 

The flamelet / progress-variable model described in a previous section was tested 
against experimental data for a methane-fueled coaxial-jet combustor corresponding to 
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FIGURE 9. Computational domain and mesh section in an azimuthal plane 

STREAMWISE VELOCITY (pu) 

FIGURE 10. Instantaneous contours of the streamwise velocity component in an azimuthal 
plane 

the experiment of Spadaccini et al. (1976). This experiment was chosen because of the 
relatively simple geometry, well-defined boundary conditions (confined jet simulation) 
coupled with a rather complex flow physics that mimics fairly well the complex-flow 
phenomena encountered in a realistic gas-turbine combustor. Results from a previous 
calculation using a structured code by Pierce & Moin (2001) are available, together 
with the original data of Spadaccini et al. (1976). This wiU allow a full validation of 
the reacting flow, including mean-velocity profiles, temperature and chemical species at 
several stations inside the main combustion chamber. A general view of the geometry 
and computational mesh in an azimuthal plane is given in figure 9. The fuel is introduced 
through a circular core section at a relatively low velocity, 0.93 m/s, while non-swirling air 
is introduced through a surrounding annulus at a much higher mean velocity of U=20.6 
m/s. The mass flow rates of the fuel and air in the inlet sections are 0.0072 kg/s and 0.137 
kg/s, respectively, the air temperature is 750 K, while the fuel temperature is 300 K. The 
mean pressure in the combustor is 3.8 atm. The fuel used in the experiment was natural 
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DENSITY 

FIGURE 11. Instantaneous contours of the density in an azimuthal plane 

MIXTURE FRACTION Z (exponential scale) 

FIGURE 12. Instantaneous contours of the mixture firaction in an azimuthal plane 

PRODUCT MASS FRACTION Cfcoz^^'mo) 

FIGURE 13. Instantaneous contours of the progress variable ycoj + J/ifjO in an azimuthal plane 
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CO MASS FRACTION (Ygo) 

FIGURE 14. Instantaneous contours of the carbon monoxide concentration yco in an 
azimuthal plane 

gas but in the present investigation, as well as in the numerical simulation of Pierce & 
Moin, it was assumed to be pmre methane. Because of the high air/fuel velocity ratio, a 
strong central recirculation region is formed in front of the fuel port, which appears to 
the surrounding air stream almost as a bluff body (see also figure 10 in which contours of 
the streamwise velocity component are shown). The recirculating combustion products 
provide a continuous ignition source for the relatively cold incoming reactants, thereby 
stabilizing the flame. Mixture fraction in the experiment was computed based on the 
total carbon and hydrogen atoms mass fractions, and the product mass fraction was 
computed from C = ycOs + VHiO- 

A computational grid containing ~ 1.3 million hexahedra was generated to mesh the 
geometry that was used by Pierce & Moin in their simulations. Though they used ap- 
proximately ~ 2.5 million points in their simulations, we were able to achieve roughly 
the same grid density in the important flow regions (mainly the upstream part of the 
main combustor) where turbulent mixing and combustion-related phenomena are impor- 
tant. The LES model is very similar in the two simulations, except the specific treatment 
in the estimation of the model coefficients due to the unstructvired environment of our 
solver. The injector radius corresponding to the annular exterior radius {R = 4.685D cm) 
and the mean air velocity in the inlet section were used for non-dimensionalization. The 
Reynolds number on the air side is ~ 50,000. The computational domain started at 
a distance of IR upstream of the main combustor chamber, where fully-developed tur- 
bulent inflow conditions were specified using a precalculated database from a separate 
calculation for a periodic pipe and annular pipe domains at the corresponding Reynolds 
numbers. The computational domain was extended to a combustor length of 12R, where 
convective outflow boimdary conditions were used to convect the turbulent eddies out of 
the domain. Fully-developed incompressible velocity and mixing fields were obtained be- 
fore the chemistry model was turned on. The initial progress-variable scalar field was set 
to its maximum allowed value determined from fast chemistry, so that initially the flame 
was fully ignited. A chemical table corresponding to methane and the specified combus- 
tor pressure was precalculated. The product mass fraction was chosen as the progress 
variable. The boundary conditions for the mixture fraction were Z = 1 in the fuel inlet 
section and Z = 0'm the air inlet section. The progress variable C in both the fuel and air 
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inlet sections was set to zero, as no reaction takes place at those locations. A time step 
of 0.005 R/U was used in the simulation using the implicit algorithm. About 80 inner 
iterations were needed to reduce the momentum residuals by five orders of magnitudes, 
while the conjugate-gradient pressure solver (no multigrid) needed about 1,700 iterations 
per time step to converge the pressure. About 50% of the CPU time per iteration was 
spent in the pressure solver, and ~ 15% in the combustion module. Based on Pierce & 
Moin's estimations we expect that ~ 500 R/U time units will be needed to obtain fully 
converged statistics. As mentioned in a previous section we expect to use ~ 70,000 CPU 
hours for this computation on an IBM SP3 machine. 

At this point the calculation was run for ~ 120 R/U time units and the flow seems 
'statistically steady' in the upstream part of the main combustor chamber. The stream- 
wise velocity profile and its rms fluctuation in a section situated just downstream of 
the entrance into the main combustor chamber show good agreement with the similar 
profiles computed by Pierce & Moin. The statistics are still evolving downstream in the 
combustor. The flame location can be inferred from the temperature or the progress- 
variable contours shown in figure 13, as the progress variable essentially is tracking the 
reaction. In the experiment, the flame location was observed to lift oS' the burner and 
reattach intermittently in a highly-unsteady asymmetric manner. Our calculations also 
predict a lifted flame, and an animation of the progress-variable contomrs shows that 
OMX simulation is able to capture this behavior. At this point good qualitative agreement 
is obtained for the distribution of the mixture fraction and progress variable with the 
calculation of Pierce & Moin. Instantaneous contours of these variables in an azimuthal 
plane are shown in figure 12 and 13. Also shown are similar snapshots of the density 
(figure 11) and carbon monoxide concentrations (figure 14). 

9. Integration with spray module 
The spray models described in our progress reports from 1999, 2000 and 2001 have 

been fully integrated with the unstructured gas-phase solver. The droplets are modeled as 
point particles which satisfy Lagrangian equations. They influence the gas phase through 
source terms in the gas-phase equations. As the particles move, their position is located 
and each particle is assigned to a control volume of the gas-phase grid. The gas-phase 
properties are interpolated to the particle location and the particle equations are ad- 
vanced. The particles are then relocated, particles that cross interprocessor boundaries 
are duly transferred, source terms in the gas-phase equation are computed, and the com- 
putation is further advanced. Validation of the Lagrangian particle-tracking approach, 
application of spray simulations to the Pratt & Whitney injector, and extension of the 
spray module to account for evaporation are described below. 

9.1.  Validation of Lagrangian Particle Tracking (LPT) Scheme in CDP 

The flow in a swirl-stabilized coaxial combustor represents an important validation case. 
Sommerfeld <k Qiu (1991) provide detailed measurements of this flow, which tests both 
the gas-phase solver and the spray module. A detailed validation of the gas-phase solver in 
this geometry was completed last year and was presented in an earlier ASCI report. The 
particle-laden flowfield was computed by injecting particles with a known size distribution 
at the inlet of the combustor. The primary jet of the combustor is laden with glass beads 
whose diameter varies from 10 microns to 120 microns. The particle phase was initialized 
by computing over a few flow-through times. About 1.2 miUion particles were obtained in 
the combustor. The particle statistics were then computed over two flow through times 
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FIGURE 15. Comparison of particle phase properties between LES ( ) and experiment (o , 
Sommerfeld & Qiu 1991) for swirling flow in a coaxial combustor. (a): mean axial velocity, (6): 
mean swirl velocity, (c): mean radial velocity, (d) rms of axial velocity, (e) rms of swirl velocity, 
(/) rms of radial velocity. 
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FIGURE 16. Comparison of the pure-droplet, pure-parcel, and hybrid approaches. 
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FIGURE 17. Comparison of the spray-penetration depth with experimental data. 

in the region of interest. The agreement of mean and rms velocity components with the 
experiment is shown in figure 15. Very good agreement was also obtained for the mean 
and rms of diameter distribution at various axial locations. The present computation was 
performed on 96 processors using an explicit time-advancement procedure. The overhead 
due to the particle-phase was about 30%. Particle-dispersion characteristics were also 
obtained by tracking a large number of particles of diflFerent size classes. It was compared 
with the experimental data and analytical estimates to show good agreement. Details of 
this computation can be found in Apte et al. (2002). It was shown that the point-particle 
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FIGURE 18. Evolution of spray from a PW injector: contours of axial velocity superimposed on 
particle scatter plot. 

approximation of the dispersed phase was able to accurately predict the behavior of the 
sohd phase for the particle loadings simulated. This study represents the first LES of 
two-phase flows in a coaxial combustor using the unstructured grid solver (CDP). After 
completing this comprehensive validation study, we focused on incorporating complex 
spray breakup and evaporation models in CDP. 

10. Spray models for use in CDP 
10.1. Stochastic model for secondary breakup 

Liquid-spray atomization plays a crucial role in the combustion dynamics in gas-turbine 
combustors. In standard Lagrangian particle-tracking codes, emphasis is placed on ob- 
taining the correct spray-evolution characteristics away from the injector. Only the global 
behavior of the primary atomization, occurring close to the injector, is considered and 
the details are not captured. The essential features of spray evolution, viz. droplet size 
distribution, spray angle, and penetration depth, are predicted away from the injector 
surface by secondary breakup models. Usually standard, deterministic breakup models 
based on Taylor Analogy Breakup (TAB) (O'Rourke & Amsden 1987) or wave (Reitz 
1987) models are employed in RAKS-type computations. Liquid 'blobs' with the size of 
the injector diameter are introduced into the combustion chamber and undergo atom- 
ization according to the balance between aerodynamic and surface-tension forces acting 
on the Uquid phase. In the TAB model, oscillations of the parent droplet are modeled 
in the framework of a spring-mass system and breakup occurs when the oscillations ex- 
ceed a critical value. In the wave model, new droplets are formed based on the growth 
rate of the fastest wave instabihty on the surface of the parent blob. Both models are 
deterministic, with 'single-scale' production of new droplets. In many combustion appU- 
cations, however, injection of a Uquid jet takes place at high relative velocity between 
the two phases (high initial Weber number). Under these conditions, intriguing processes 
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FIGURE 19. Load balance for spray-breakup simulation. 

such as turbulence-induced breakup, multiple-droplet collisions in the dense-spray region, 
fluctuations due to cavitating flow inside the injector, etc., contribute to the process of 
atomization. This results in droplet formation over a large spectrum of droplet sizes and 
is not captured by the above models. Predicting the distribution of droplet sizes at each 
spray location is important for sheet-breakup modeling. 

In order to predict the essential global features of these complex phenomena, a stochas- 
tic approach for droplet breakup which accounts for a range of product-droplet sizes is 
necessary. Specifically, for a given control volume, the characteristic radius of droplets 
is assumed to be a time-dependent stochastic variable with a given initial distribution 
function. The breakup of parent blobs into secondary droplets is viewed as the temporal 
and spatial evolution of this distribution function around the parent-droplet size. This 
distribution function follows a certain long-time behavior, which is characterized by the 
dominant mechanism of breakup. The size of new droplets is then sampled from the 
distribution function evaluated at a tj^iical breakup time scale of the parent drop. 

Owing to the complexity of the phenomenon, it is difficult to clearly identify such a 
dominant mechanism for breakup. Kolmogorov (1941) developed a stochastic theory for 
breakup of solid particles by modeling it as a discrete random process. He assumed that 
the probability to break each parent particle into a certain number of parts is independent 
of the parent-particle size. Using the central limit theorem, Kolmogorov pointed out that 
such a general assumption leads to a log-normal distribution of particle size in the long- 
time limit. 

Based on Kolmogorov's hypothesis we have developed a numerical scheme for atom- 
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ization of liquid spray at large Weber number (Gorokhovski & Apte 2001). The discrete 
model of Kolmogorov is reformulated in terms of a Fokker-Planck (FP) differential equa- 
tion for the evolution of the size-distribution function from a parent blob towards the 
log-normal law: 

where the breakup frequency {u) and time (f) are introduced. Here, T(x, t) is the dis- 
tribution function for x = log(rj), where rj is the droplet radius. Breakup occurs when 
t > tbreakup = V''- The value of the breakup frequency and the critical raxiius of breakup 
are obtained by the balance between the aerodynamic and surface tension forces. The 
secondary droplets are sampled from the analytical solution of equation (10.1) corre- 
sponding to the breakup time-scale. The parameters encountered in the FP equation 
({^) and (^^)) are computed by relating them to the local Weber and Reynolds numbers 
for the parent blob, thereby accounting for the capillary forces and turbulent properties. 
The capillary force prescribes a lower bound hmit for the produced-droplet size through 
the local maximum stable (or critical) radius (r^r). The velocity of the produced droplets 
is modeled using a Monte-Carlo procedure. As new droplets are formed, parent droplets 
are destroyed and Lagrangian tracking in the physical space is continued until further 
breakup events occur. The evolution of droplet diameter is basically governed by the 
local relative-velocity fluctuations between the gas and liquid phases. In this respect, 
LES plays a key role in providing accurate, local estimates of the gas-phase turbulent 
quantities. Although the mesh spacing used in a typical LES computation is larger than 
droplet size, the superiority of LES over RANS lies in accurate predictions of mixing and 
momentum transport from the gas phase to the spray field. The details of this model are 
given by Gorokhovski & Apte (2001). 

10.2. Hybrid particle-parcel technique for spray simulations 

Performing spray-breakup computations using Lagrangian tracking of each individual 
droplet gives rise to a large number of droplets (> 50-100 milUon) very close to the 
injector. Computing such a large number of droplet trajectories is a formidable task 
even with supercomputers. In parallel computation of complex flows utilizing standard 
domain-decomposition techniques, the load balancing per processor is achieved by dis- 
tributing the number of grid cells equally among all processors. Lagrangian particle 
tracking, however, causes load imbalance owing to the varying number of droplets per 
processor. 

In order to overcome the above load-balancing problem, the usual approach is to rep- 
resent a group of droplets with similar characteristics (diameter, velocity, temperature 
etc..) by a computational particle or 'parcel'. In addition, one carries the number of 
droplets per parcel as a parameter to be tracked. Since, a parcel represents a group 
of droplets (of the order of 100-1000), the total number of computational particles or 
trajectories to be simulated is reduced significantly. With breakup, the diameter of the 
parcel is sampled according to the procedure given above and the number of droplets 
associated with the particles is changed in order to conserve mass. This reduces the total 
number of particles per processor and increases the computational overhead with sprays 
by about 20% depending on the number of parcels used. Each parcel has all the droplet 
characteristics associated with it. The parcels methodology works well for RANS-type 
simulations where one is interested in time- or ensemble-averaged quantities. For LES, 
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however, we should ideally simulate as many droplet trajectories as possible in order to 
obtain time-accurate results. 

A hybrid scheme involving the computation of both individual droplets and parcels is 
proposed. The difference between droplets and parcels is simply the number of particles 
associated with them, Npar, which is unity for droplets. During injection, new particles 
added to the computational domain are pure drops {Npar = 1). These drops move down- 
stream and undergo breakup according to the above breakup model and produce new 
droplets. This increases the number of computational particles in the domain. In the 
dense-spray regime, one may obtain large number of droplets in a control volume and its 
immediate neighbors. The basic idea behind the hybrid approach is to collect all droplets 
in a particular control volume, and group them into bins corresponding to their size and 
other properties such as velocity, temperature etc. The droplets in bins are then used to 
form a parcel by conserving mass, momentum and energy. The properties of the parcel 
are obtained by mass-weighted averaging from individual droplets in the bin. For this 
procedure, only those control volumes are considered for which the number of droplets 
increases above a certain threshold value. The number of parcels created would depend 
on the number of bins and the threshold value used to sample them. The parcel thus cre- 
ated then undergoes breakup according to the above stochastic sub-grid model, however, 
does not create new parcels. On the other hand, Npar is increased and the diameter is 
decreased by mass conservation. 

The effectiveness of this hybrid approach is demonstrated in the following computa- 
tions. The implementation of this method in an unstructured LES code gives us the 
capability of testing and validating these models in realistic industrial geometries for 
various combustors with multiphase flows. 

10.3. Spray-breakup simulations 

Simplified combustor geometry 

In order to validate the stochastic breakup model, a standard test case for spray atom- 
ization is simulated and compared with the experimental data of Hiroyasu and Kudota 
(1974) in a Diesel-engine configuration. The computational domain is a closed cyhnder 
of length 13.8 cm and diameter 5.6 cm. A liquid jet is injected through a single-hole noz- 
zle into this constant-pressure, room-temperature nitrogen chamber. Since the chamber 
temperature is low, evaporation of the liquid fuel is negligible. Large blobs of diameter 
300 fixa, corresponding to the injector size, are injected into the combustion chamber. 
Initially, there is no gas-phase flow inside the chamber. Gas-phase recirculation zones 
are created as the spray penetrates into the combustion chamber, through momentum- 
transfer between the gas and liquid phases. Three cases with different chamber pressures 
of 1.1, 3, and 5 MPa are simulated and compared with the experimental data. The cor- 
responding flow parameters are indicated in table 3. The number of droplets injected per 
iteration is determined from the droplet diameter and time step by keeping the mass-flow 
rate constant. The time step used in the present simulation is 1.5 ms and a uniform grid 
of 64 X 65 X 65 cells is found to capture the spray dynamics accurately. 

The computations were performed using three different approaches: tracking and cre- 
ation of all droplets, tracking of parcels, and the hybrid droplet-parcel algorithm. Results 
for the 1.1 MPa case are qualitatively compared in figures 16a-c, respectively. The size 
and location of each circle corresponds to that of the actual droplets in the computa- 
tional domain. Figure 16a indicates that a broad spectrum of droplet sizes is present with 
the co-existence of large and small droplets. It should be noted that, when all droplet 
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Parameters Case 1 Case 2 Case 3 

P,i„MPa 10 10 10 

Pgas, MPa 1.1 3 5 

Injection diameter, ^m 300 300 300 

Injection time, ms 2.5 4 5 

Injection velocity, m/s 102 90.3 86.4 

TABLE 3. Validation cases for stochastic breakup model in Diesel-engine configuration; 
Hiroyasu &: Kudota (1974). 

trajectories are computed a large number of droplets (~ 2-3 million) is obtained even at 
an early stage of the simulation. This simulation, however, depicts the complex interac- 
tions between the liquid and gas phases, the momentum coupling, and spray atomization 
due to stripping of small droplets. Figure 16b shows a similar simulation performed 
using the parcels-approach normally used in RANS-type computations. An extremely 
coarse (global) representation of the liquid core and atomization is obtained because new 
droplets are not created. Figure 16c, on the other hand, indicates the effectiveness of the 
hybrid approach. Here, the total number of computational particles is much smaller than 
those obtained when all the droplet trajectories are computed. 

Close to the nozzle, the liquid core shows the existence of large and small droplets. 
Away from the nozzle, a global representation of droplets grouped to form parcels as 
well as small sparse droplets is observed. The computational overload due to the hybrid 
approach is significantly less (~ 50 times lower) in comparison with the computation 
of all droplet trajectories. The essential features of the spray dynamics are captured by 
the hybrid approach indicating its effectiveness and applicability in Eulerian-Lagrangian 
formulations. 

Figure 17 shows the comparison of the spray-tip penetration depth as a function of 
time with the experimental data for the three cases investigated. Good agreement is ob- 
tained for all the three cases using the hybrid algorithm. The penetration depth decreases 
with increase in pressure. This could be attributed to the decreased injection velocity 
as well as strong damping of the liquid momentum by the denser gas-phase at higher 
pressures. The Uquid core lengths were less than 2 mm in the above computations. The 
penetration depths predicted were weakly dependent on the grid size and the resolution 
used was sufficient to obtain good agreement with the experiments. The ligament-like 
hquid structures deflected outward are clearly visible and the spray angles produced for 
the three cases, 20, 23, and 25 degrees, respectively, are in close agreement with the 
experimental observations (Hiroyasu & Kudota 1974). 

PW front end validation geometry 

The stochastic model together with the hybrid particle-parcel approach were used to 
simulate the spray evolution from the Pratt & Whitney injector. The experimental data 
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set was obtained by mounting the injector in a, cylindrical plenum through which gas 
with prescribed mass-flow rate was injected. The gas goes through the main and guide 
swirler to inject a swirling jet into the atmosphere. Liquid film is injected through the 
filmer surface which forms an annular ring. The Uquid mass-flow rate corresponds to 
certain operating conditions of the gas-turbine engine. Measurements were made of the 
droplet distribution and Uquid mass flux in the radial direction at two difierent axial 
locations away from the injector. Gas-phase statistics for mean and rms velocities is 
also available at these locations. The outside air-entrainment rates were measured and 
prescribed as inflow conditions. A snapshot of the spray evolution in the 2 = 0 plane, 
together with the gas-phase axial velocity contours, is shown in figurelS. The hybrid 
approach used herein gives a dynamical picture with correct spray angle. Preliminary 
results show that the liquid mass fluxes at two downstream locations are in reasonable 
agreement with the experimental data. However, a longer-time sample is necessary to 
match the computational predictions with the experiments. 

This computation was performed on 96 processors. The domain decomposition is based 
on the optimal performance of the Eulerian gas-phase solver. Due to breakup, a large 
number of droplets is created in the vicinity of the injector. With the hybrid approach, 
the total number of computational particles tracked after 6 ms is about 3.5 million, which 
represents approximately 13 million droplets. This includes about 150,000 parcels. The 
distribution of particles on 96 processors is shown by the histogram in figiure 19. This 
impUes that less than 30% of the total number of processors contain more than 10,000 
computational particles. A prehminary solution to this problem is to use more processors, 
which would reduce the maximum number of computational particles per processor. A 
better approach is to develop an alternative domain-decomposition scheme with dynamic 
load balancing and additional weights for CVs containing particles. 

11. Future plans 
Our plans for the next year are as follows: 
• Complete the simulation of reacting flow in the coaxial combustor geometry corre- 

sponding to the experiment of Spadaccini et al. 
• Complete spray breaJcup simulation in Pratt & Whitney front-end validation geom- 

etry. 
• Address the issue of load-balancing due to spray and investigate dynamic domain- 

decomposition techniques for Eulerian-Lagrangian computations of spray. 
• Perform validation simulation for spray evaporation corresponding to the experiment 

of Sommerfeld & Qiu (1998). 
• Implement a multi-level version of the geometric multigrid algorithm for the pressure- 

equation solver and investigate the advantages of using multigrid techniques to accelerate 
convergence of the momentum and scalar transport equations. 

• Improve the agglomeration algorithm to optimize the geometric characteristics of ag- 
glomerated coarse grid control volumes. Alternate-directional agglomeration algorithms 
will be investigated. 

• Implement commutative filters to estimate more accurately the filtered quantities 
that have to be evaluated in the dsmamic procedure and to implement LES models with 
explicit filtering in which the filter width can be specified a priori by the user instead of 
being dictated by the local grid spacing. 

• Generate the next-generation grids for the complex Pratt & Whitney combustor. 
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• Calculate the reacting flow in the full Pratt & Whitney geometry and validate by 
comparing with the experimental data provided by Pratt & Whitney. This calculation will 
involve testing not only the combustion model module but also the Lagrangian particle 
tracking module, evaporation and breakup modules. 
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Consistent boundary conditions for integrated 
LES/RANS simulations: LES inflow conditions 

By J. U. Schluter 

1. Motivation 

Currently, a wide variety of flow phenomena are addressed with numerical simulations. 
Many flow solvers axe optimized to simulate a limited spectrum of flow effects effectively, 
such as single parts of a flow system, but are either inadequate or too expensive to be 
applied to a very complex problem. 

As an example, the flow through a gas turbine can be considered. In the compressor 
and the turbine section, the flow solver has to be able to handle the moving blades, 
model the wall turbulence, and predict the pressure and density distribution properly. 
This can be done by a flow solver based on the Reynolds-Averaged Navier-Stokes (RANS) 
approach. On the other hand, the flow in the combustion chamber is governed by large 
scale turbulence, chemical reactions, and the presence of fuel spray. Experience shows that 
these phenomena require an unsteady approach (Veynante and Poinsot, 1996). Hence, 
the use of a Large Eddy Simulation (LES) flow solver is desirable. 

While many design problems of a single flow passage can be addressed by separate 
computations, only the simultaneous computation of all parts can guarantee the proper 
prediction of multi-component phenomena, such as compressor/combustor instability and 
combustor/turbine hot-streak migration. Therefore, a promising strategy to perform full 
aero-thermal simulations of gas-turbine engines is the use of a RANS flow solver for the 
compressor sections, an LES flow solver for the combustor, and again a RANS flow solver 
for the turbine section (figure 1). 

2. Interface 

The simultaneous computation of the flow in all parts of a gas turbine with different 
flow solvers requires an exchange of information at the interfaces of the computational 
domains of each part. Previous work has established algorithms, which ensure, that two 
or more simultaneously running flow solvers are able to exchange the information at the 
interfaces efficiently (Shankaran et al, 2001, Schluter et al, 2002). 

The necessity of information exchange in the flow direction from the upstream to the 
downstream flow solver is self-explanatory: the flow in a passage is strongly dependent 
on mass flux, velocity vectors, and temperatmre at the inlet of the domain. However, 
since the Navier-Stokes equations are elliptic in subsonic flows, the downstream flow 
conditions can have a substantial influence on the upstream flow development. This can 
easily be imagined by considering that, for instance, a flow blockage in the turbine section 
of the gas turbine can determine and even stop the mass flow rate through the entire 
engine. This means that the information exchange at each interface has to go in both, 
downstream and upstream, directions. 

Considering an LES flow solver computing the flow in the combustor, information on 
the flow field has to be provided to the RANS flow solver computing the turbine as 
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FIGURE 2. Gas turbine combustor with interfaces. (LES of combustor from Mahesh et al, 2001) 

well as to the RANS flow solver computing the compressor, while at the same time, 
the LES solver has to obtain flow infomation from both RANS flow solvers (figure 2). 
The coupling can be done using overlapping computational domains for the LES and 
RANS simulations. For the example of the compressor/combustor interface this would 
imply that inflow conditions for LES will be determined from the RANS solution at the 
beginning of the overlap region, and correspondingly the outflow conditions for RANS 
are determined from the LES solution at the end of the overlap region. 

However, the different mathematical approaches of the different flow solvers make 
the coupling of the flow solvers challenging. Since LES resolves large-scale turbulence 
in space and time, the time step between two iterations is relatively small. RANS flow 
solvers average all turbulent motions over time and predict ensemble averages of the 
flow. Even when a so-called unsteady RANS approach is used, the time step between 
two ensemble-averages of the RANS flow solver is usually larger by several orders of 
magnitude than that for an LES flow solver. 

The specification of boundary conditions for RANS from LES data is relatively straight- 
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forward. The LES data can be averaged over time and used as boundary condition for 
the RANS solver. 

Since LES computations have shown to be sensitive to outflow conditions (Moin, 1997, 
Pierce & Moin, 1998a), the adjustment of the LES solution near the outlet to the RANS 
solution of the downstream computation is of importance. Previous work investigated in 
detail LES outflow conditions (Schliiter and Pitsch, 2001, Schliiter et al, 2002). A virtual 
body force is employed to drive the LES mean velocity field to the RANS solution in an 
overlap region. The turbulent quantities and the pressure field adjusts accordingly to the 
mean velocity field. 

In the present study, the boundary conditions provided firom an upstream RANS flow 
solver to a downstream LES flow solver is investigated. The inflow conditions have to be 
created such, that the time-averaged mean values of all computed quantities match the 
RANS solution at a given plane and meaningful turbulent fluctuations are added. LES 
computations of validation test cases are performed to assess the influence of the inflow 
boundary conditions. 

3. Inflow Boundary conditions 

The following section presents some possible LES inlet conditions, which are tested for 
use in integrated RANS-LES computations 

3.1. Creation of database from auxiliary LES computation 

The formulation of LES inflow conditions from time-averaged RANS data is similar to 
the definition of LES inflow conditions from experimental data, which is usually given 
in time-averaged form. An estabhshed procedure to create inflow boundary conditions is 
to perform an auxiUary LES computation prior to the actual LES of the desired domain 
(Pierce & Moin, 1998b). The auxiUary LES computation computes a periodic pipe and 
uses virtual body forces inside the domain to drive the flow to the desired velocity profiles. 
The time history of one plane of this computation is written into a database. The actual 
LES computation of the desired geometry then reads this database and uses its transient 
velocity field to define its own inlet velocity field. 

This method is a well estabhshed procedure and shows good results in reproducing 
experiments (e.g. Duchamps & Pitsch, 2000, Schliiter, 2001). Hence, it will be used as a 
benchmark for all following proposed boundary conditions. 

The advantage of this method is that the representation of the inlet turbulence is taken 
from a fully developed turbulent flow, which means all temporal and spatial correlations 
of the turbulent fluctuations are actual representations of eddies. The energy spectra in 
time and space have a natural energy distribution especially in the long wave range. 

The creation of the database implies additional computational costs. However, using 
flow solver specialized to this task, the auxihary computation usually takes less than an 
hour wall-clock time on a single processor, which is less than 1% of the computational 
costs for the LES of the actual geometries used in the current investigation. 

The disadvantage of this procedure is that the mean velocity field at the inlet has to be 
known prior to the LES computation. In integrated RANS-LES computations the mean 
velocity field at the inlet of the changes in time, and hence, is vmknown. This makes it 
impossible, to apply this procedure in this form for integrated RANS-LES computations. 
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3.2. No-fluctuations inflow conditions 

The most simple way to define the inflow boundary conditions from RANS data is to ne- 
glect the turbulent fluctuations entirely. The velocity field at the inlet is then defined by 
the ensemble-averaged mean profiles of the RANS computation. This means, the incom- 
ing flow is laminar, but the shape of the velocity profiles is still that from a turbulent flow. 
It is easy to adapt this inflow condition during the LES computation to take variations 
of the ensemble-averaged flow field delivered by the RANS computation into account. 

3.3. Random fluctuations 

Early work in LES inlet boundary conditions report the usage of random fluctuations 
superposed to the mean velocity field at the inlet to simulate inflow turbulence. However, 
due to the lack of correlations in space and time of the fluctuations, these lack the energy 
in the long wave range. As a result of that, the fluctuations are usually in the high wave 
spectrum and hence, dissipated very quickly. The few tests in the current investigation 
which were made with this inlet condition agree with these findings. The flow laminarizes 
quickly behind the inlet and flow fields obtained with this inlet condition were indistin- 
guishable from the flow fields obtained with the no-fluctuations inflow condition. Hence, 
they will not be shown here. 

3.4. Mean velocity profiles with turbulent fluctuations from database 

The method proposed here for integrated RANS-LES computations, uses the mean flow 
field from the RANS solution and adds meaningful turbulence from a database created 
by an auxiliary LES computation. This allows to vary the mean flow field during the LES 
computation in order to take temporal variations of the RANS solution into account. As 
for the inlet condition proposed in section 3.1, an auxiliary LES computation of a pipe 
flow is performed to define the turbulent fluctuations. The inlet condition is then defined 
as: 

/u'l       (r) 
Wi,LEs(<) = Ui,RANs(r) + (Ui,DB(<) - Ui,!,^) '   "        r^"^  (3.1) 

// V    WDB 

/// 
with RANS denoting the solution delivered by the RANS computation and DB properties 
delivered by the database. The time-scale t is the time-scale used by the LES computa- 
tion, and r the time-scale used by the RANS computation. The RANS time-step AT is 
usually much larger than the LES time-step At, which means, that multiple LES inlet 
conditions are computed before the RANS solution is updated. 

Term // of Eq. 3.1 computes the velocity fluctuation of the database. This turbulent 
fluctuation is scaled to the needed value with term ///. Here, it is assumed that the 
value of u'A (r) is a known quantity. However, most RANS turbulence models do not 
compute the single components of the Reynolds-stress tensor, but more general turbulent 
quantities such as the turbulent kinetic energy k. In this case, the axial components of 
the RejTiolds-tensor have to be approximated by: 

"m        =1*^ (3-2) 
Once the turbulent fluctuation is computed, it is then added to the time-averaged 

velocity field (term I) and a meaningful inlet velocity field is recovered. 
The quality of the database can be measured in the necessity of term /// to scale the 
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FIGURE 3. Geometry of test case 

turbulent fluctuation. Since this scaling is linear, it is desirable, that the scaling factor 
is close to unity. Hence, in the creation of the database it is important to reproduce the 
expected inlet condition as closely as possible in order to keep scaling in the bounds of 
the validity of a linear extrapolation. 

In the following test cases, inlet conditions computed with eqn. 3.1 are using databases 
with flow statistics strongly different from the desired values. This is solely to prove the 
robustness of the method and not advisable for the final application. 

4. Validation test case 
In order to validate the influence of different inflow boundary conditions, LES compu- 

tations of a confined jet with and without swirl were performed. The considered geometry 
corresponds to the experiments of Dellenback (DeUenback, 1986, DeUenback et al, 1988). 
The experiment investigates the flow at an axi-symmetric expansion (figure 3). Measure- 
inents upstream of the expansion allow a proper description of the inflow statistics and 
multiple measured velocity profiles downstream of the expansion give a good picture of 
the flow development. 

Three different flow configurations are computed: 
(a) no swirl {S = 0.0) at a Reynolds-number Re = 30,000 
(6) strong swirl (5 = 0.6), at Re = 30,000 and 
(c) weak swirl (5 = 0.3), at Re = 20,000 

with the swirl number S defined as: 

S = 
1 /Q r'^UxU^dr 

(4.1) 
■^   I^ruldr 

where Ux is the axial velocity component, u^ the azimuthal velocity component, and R 
the radius of the nozzle. 

For the first two cases measurements are available and LES predictions can be com- 
pared with experimental data. For the last case, no measurements are available. 

The computational meshes contain 1.58 miUion points (1.52 million cells) and are 
identical for all LES computations. 

5. LES flow solver 
In order to investigate the effects of different inflow boundary conditions, the various 

boundary conditions were implemented in an LES flow solver and tested. For this task, 
the LES flow solver developed at the Center for Turbulence Research (Pierce & Moin, 
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FIGURE 4. LES results for a confined jet. Squares: experiment; Dots: LES with inflow entirely 
from database (section 3.1); Dashed line: LES with no-fluctuations inflow (section 3.2); Solid 
line: LES with mean-flow 4- fluctuations from data-base (section 3.4) 

1998a) has been used. The flow solver solves the filtered momentum equations with 
a low-Mach number assumption on an axisymmetric structured mesh. A second-order 
finite-volume scheme on a staggered grid is used (Akselvoll & Moin, 1996). 

The subgrid stresses are approximated with an eddy-viscosity approach. The eddy 
viscosity is deternained by a dynamic procedmre (Germano et al, 1991; Moin et al, 1991). 

6. Validation 

6.1. Confined jet without swirl 

The first test of the inlet boundary conditions is made for a confined jet without swirl. It 
is well known, that the spreading rate of the jet is dependent on the turbulence present 
in the jet flow. 

Figure 4 shows the velocity fields obtained for this case. Experimental results are shown 
as square symbols. The two velocity profiles on the left are taken upstream of the step, 
and the leftmost profile defines the inlet conditions for the LES computations. 

The first LES computation (black dots in figure 4) determines the inlet conditions 
entirely from a database (compare section 3.1). The database was created by an auxiliary 
computation with body forces driving the mean velocity field to the desired inlet velocity 
profile on the left. The usage of this boundary condition is possible in this case, since 
the time-averaged velocity field defining the inlet condition does not vary in time. It 
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can be seen, that this LES computation reproduces the experimental data well in mean 
values and turbulent fluctuations. The reattachment of the flow behind the step is well 
captured. 

The second LES computation uses no-fluctuations inflow conditions (compare section 
3.2). Since the initial turbulence in the flow does not reach the desired level near the 
step, the spreading rate of the jet is underestimated and the jet penetrates much further 
into the chamber (dashed lines in figure 4). The reattachment length is overestimated. 
As a result of the neglect of turbulence at the inlet, the axial turbulent fluctuations are 
underestimated throughout the domain. 

The thu'd LES computation uses the mean velocity field and turbulent fluctuations 
from a database (compare section 3.4). The database used is the database created for 
a swirhng flow (first LES computation of the following chapter, section 6.2) and hence, 
is not adapted to this particular case. The correction of Eq. 3.1 is used to obtain the 
desired mean statistics. The results of this computation (soUd Unes) show a good agree- 
ment with the experiment and the first LES computation in the mean values. There axe 
some discrepancies in turbulent fluctuations between this LES computation and the LES 
computation using a matching database due to the difi'erent description of turbulence at 
the inlet. However, both LES results are reasonably close to the experimental data. 

This test case shows, that the proposed inflow condition (Eq. 3.1) is capable of repro- 
ducing the desired flow field, even when a low-quality database is used. The importance 
of turbulent fluctuations at the inlet is underUned with the failure of the no-fluctuations 
inlet condition to reproduce the flow field properly. 

6.2. Confined jet with strong swirl 

As a second test case a swirl flow at an expansion with a swirl number S = 0.6 is 
considered. Swirl flows with high swirl (5 > 0.25) create central recirculation zones, and, 
as a result of that, flows with high shear are created which have a high level of turbulence 
production. 

Figure 5 shows the results of this series of computations. The LES computation using 
a data-base with matching inlet velocity statistics (black dots) agrees well with the 
experiments (square symbols). 

Surprisingly, the LES computation using the no-fluctuations inflow conditions (dashed 
lines) yields a comparable flow field and, despite some discrepancies, agrees reasonably 
well with the experiments. This can be explained with the fact, that the level of turbulence 
production is very high behind the expansion. The origin of the inner recirculation zone 
in highly swirling flows is fixed at the location of the expansion. This means, the zones 
of the tmrbulence production - the shear layers created by the recirculating fluid and 
the issuing jet - is well determined and independently of the inflow conditions. The 
turbulence level is then nearly entirely defined by the tiurbulence production behind the 
step. 

The third LES computation uses a combined approach and the database from the 
previous test case of the flow without swirl (section 6.1). The particular shape of the 
axial velocity profile and the entire swirl component is imposed using Eq. 3.1. The LES 
computation recovers the LES solution using a matching database exactly. 

This second test case shows, that situations exist, where the inlet turbulence plays a 
minor role, even when complex flow configurations are considered. In this special case, the 
high level of turbulence production inside the LES domain is dominant and its location 
and level are not determined by the inlet conditions. 
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FIGURE 5. LES results for a jet with strong swirl (S = 0.6). Squares: experiment; Dots: LES 
with inflow entirely from database (section 3.1); Dashed line: LES with no-fluctuations inflow 
(section 3.2); Solid line: LES with mean-flow + fluctuations from data-base (section 3.4) 



LES inflow conditions 151 

6.3. Confined jet with weak swirl 

While in the previous case the strong swirl ensured a certain universality of the extent of 
the recirculation zone, weakly swirhng flows are much more sensitive to inflow conditions 
(Gupta et al, 1984). Since it is desirable for most flow applications, e.g for gas turbine 
combustors, to keep the swirl number low in order to minimize the pressure drop over the 
swirler, these kinds of flows are of particular interest for industrial applications. Hence, a 
proper definition of LES inflow boundary conditions is crucial for the prediction of these 
flows and the optimization of swirler geometries. 

The third test case considered in this investigation is a weakly swirling flow at a 
swirl number S = 0.3. The swirl number is just supercritical, meaning that an inner 
recirculation zone develops. Unfortunately, no experimental measurements are available 
for this case, but since the traditional method of generating inflow conditions by an 
auxiliary LES computation was very successful in the previous two cases, the results of 
this computation can be used as a reference. 

Figure 6 shows the results of this series of LES computations. The LES computation 
with a database with matching mean flow statistics (black dots) shows the onset of the 
recirculation zone near the location of the expansion. 

Using the no-fluctuations inflow condition (dashed lines), the location and extent of 
the recirculation zone changes dramatically. As a result of that, the mean flow field differs 
substantially from the previous LES computation. Due to the neglect of turbulence at 
the inlet, the tmrbulent fluctuations are underestimated throughout the near field of the 
expansion. As a result of the displacement of the zones of turbulence production, not 
even the shape of the profiles of turbulent fluctuations is reproduced. 

Using Eq. 3.1 and the non-swirUng database from the test case in section 6.1 (soUd 
lines), all flow features are recovered. The origin and the extent of the recirculation zone 
are identical to the LES with the matching database. As a result of that, the turbulence 
production is also well represented and the prediction of turbulent fluctuations coincide. 

This last test case shows most dramatically how the choice of LES inflow boundary 
conditions may alter the results of a computation. While the previous test case of the 
strongly swirling flow was remarkably robust to different inflow conditions, the present 
case shows that only a Httle change in flow parameters, the decrease of the swirl number, 
may result in flow configuration much more sensitive to inflow conditions. 

7. Conclusions 

The definition of LES inflow conditions from time-averaged statistical data has been 
subject of research for some time. The current investigation focuses on LES inflow bound- 
ary conditions for integrated RANS-LES computations, where the LES inflow conditions 
are prescribed by the solution of an upstream RANS solver. Here, the flow statistics, 
which have to be prescribed at the inlet of the LES domain, may vary in time. 

A modification of the already widely used procedure, where an auxiHary LES compu- 
tation creates a database for inflow conditions, was proposed. This inflow condition uses 
the unsteady mean velocity profiles at the inlet and superposes turbulent fluctuations 
from a database. 

The proposed inflow condition was validated on three different flows. While one case, 
a strongly swirling flow, was surprisingly robust against different inflow conditions, the 
other two cases, a conflned jet and a weakly swirling flow, underlined the necessity of a 
proper tiurbulence description at the inlet. 
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FIGURE 6. LES results for a jet with weak swirl {S = 0.3). Dots: LES with inflow entirely from 
database (section 3.1); Dashed line: LES with no-fluctuations inflow (section 3.2); Solid line: 
LES with mean-flow -1- fluctuations from data-base (section 3.4), no experimental data available 



LES inflow conditions 153 

The inflow boundary condition proposed in the present study shows equivalent results 
to the commonly applied procedure using a database from an auxiliary LES computation. 
Its advantage over other methods is its flexibility to accommodate for time-dependent 
flow statistics at the LES inlet. 

The definition of LES inflow boundary conditions for integrated RANS-LES computa- 
tions is an important step towards integrated flow computations. 
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Integration of RANS and LES flow solvers: 
interface validation 

By J. U. Schliiter, S. Shankaran, S. Kim, H. Pitsch AND J. J. Alonso 

1. Introduction 
The variety of flow problems encountered in complex flow systems - such as in aero- 

engine gas turbines - requires well adapted flow solvers for different parts of the system 
in order to predict the flow accurately and efficiently. Currently, many flow solvers are 
specialized to simulate one part of a flow system effectively, but are either inadequate or 
too expensive to be applied to a generic problem. 

For the example of a gas turbine, in the compressor and the turbine section, the flow 
solver has to be able to handle the moving blades, model the wall turbulence, and predict 
the pressure and density distribution properly. This can be done by a flow solver based 
on the Reynolds-Averaged Navier-Stokes (RANS) approach. On the other hand, the flow 
in the combustion chamber is governed by large scale turbulence, chemical reactions, 
and the presence of fuel spray. Experience shows that predictions of such phenomena are 
strongly improved by the use of Large Eddy Simulations (LES). 

While many design problems of a single flow passage can be addressed by separate 
computations, only the simultaneous computation of all parts can guarantee the proper 
prediction of multi-component phenomena, such as compressor/combustor instabihty and 
combustor/turbine hot-streak migration. Therefore, a promising strategy to perform full 
aero-thermal simulations of gas-turbine engines is the use of a RANS flow solver for the 
compressor sections, an LES flow solver for the combustor, and again a RANS flow solver 
for the turbine section (figure 1). 

While it would be possible to use one single flow solver, which switches between dif- 
ferent mathematical approaches depending on the flow section, the current choice is to 
use several separate flow solvers. The reason for that is, that currently a wide variety of 
validated flow solvers are in use. Merging two or more computer programs into a single 
code or extending a code to different modeling approaches is tiresome at best and prone 
to errors. 

The usage of entirely separate flow solvers allows, for a given flow problem, to choose 
the best combination of a variety of existing flow solvers, which have been developed, 
optimized, and validated separately. Once these have been equipped with a generic in- 
terface, it is possible to continue the development of the flow solvers separately without 
compromising compatibility. The implementation of this interface into several flow solvers 
allows their modular exchange, which results in a high degree of flexibility. 

The implementation of an interface for the simultaneous flow computation using sep- 
arate flow solvers faces a niunber of challenges. These can be described as follows: 

(a) Establishing a contact between the flow solvers for information exchange: The first 
obvious obstacle is to estabhsh a real-time connection between two or more simultaneous 
running flow solvers over which the information can be exchanged. Most flow solvers are 
already parallelized using MPI (Message Passing Interface). Here, MPI will be used for 
peer-to-peer message passing as well. 
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FIGURE 1. Gas turbine engine 

(6) Ensuring that each flow solver obtains the information needed on the boundaries: 
A general procedure has to be defined, which ensures, that each flow solver knows, which 
information has to be sent where. 

(c) Processing of the obtained information to boundary conditions: Finally, the physical 
problem of defining meaningful boundary conditions from the obtained data has to be 
addressed. This can be especially challenging, when two different modeling approaches, 
such as LES and RANS, are used. 

The current investigation deals with these tasks and describes a successful coupling of 
RANS and LES flow solvers. 

2. Peer-to-peer message passing 
The message passing between two separate flow solvers (peer-to-peer message passing) 

is very similar to the information exchange between processors of a parallel computation. 
Many flow solvers are paralleHzed and use MPI for process-to-process message passing. 
MPI can be used for communication between different flow solvers as well. 

Before estabUshing a contact between two flow solvers, it has to be ensured, that the 
commands for the internal message passing due to the parallelization of the two codes 
do not interfere with each other. With MPI it is possible to direct the range of the 
message passing with communicators. The most commonly used communicator of MPI 
is the standard communicator MPI_COMM_WORLD which includes all processors of all codes. 
Using this communicator for internal message passing will inevitably result in confusion 
between the two codes. Hence, each code has to create its own local communicator {intra- 
communicator) to encapsulate the internal message passing. All codes have to use their 
own intra-communicator for all MPI commands concerning the parallelization of the code 
instead of MPI_COMM_WORLD. 

In the next step, a communicator is created for the peer-to-peer message passing {inter- 
communicator). Say, a case with three flow solvers is to be run with a first RANS code 
using three processors (ranks 0, 1, and 2, local root process 0), a LES code using four 
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Create Intra-ccmmunlcator LOCALJHORLD for internal meaaage 
passing   

Detezmine rank of local root process 

SEND rank of local root to 
global root 

RECV list of ranks of peer 
root ranks from global root 

FOR 2 to total no. of codes 

RECV rank of root of peer 
code from peer root 
(using MPI_aiir_SOT]RCE) 

FOR 2 to total no.  of codes 

SEND list of ranks of peer 
root ranks to peer root ranks 

BC&ST list of peer root ranks to all local processors 

FOR 1 to total no. of codes 

FIGURE 2. Structure Chart for exchange of root ranks needed for creation of 
inter-communicators 

processors (ranks 3, 4, 5, and 6, local root process 3) and a second RANS code using two 
processors (ranks 7 and 8, local root process 7). In order to create the inter-communicator, 
it is necessary, that every processor knows the rank of the root processes of the other 
codes. A global root process is appointed (rank 0) which collects the ranks of the root 
processes of all codes (here: ranks 0, 3 and 7), compiles them into a hst and sends them 
back to the local root processes. A structure chart for this procedure is shown in figure 
2. Since there is no inter-communicator available yet, this communication has to be done 
with the standard communicator MPI_COMM_WORLD. With the knowledge of the ranks of 
all root processes it is possible to create the inter-communicators. 

3. Handshake and communication procedures 

3.1. Handshake 

Efficient parallelizing of a flow solver seeks to limit the information exchange between 
parallel processes to a minimum, since the information exchange requires a large amount 
of time compared to the actual computation. Similarly, it is favorable to minimize the 
communication between several parallel running flow solvers. Since the flow solvers have 
to exchange flow information rather often, either after each iteration or after a chosen 
time-step, the aim is to minimize the communication efforts by an initial handshake, 
which optimizes the communication during the actual flow computation. 

The most simple way to organize the information exchange would be to let only the 
root processes communicate. However, this would mean that prior to the peer-to-peer 
communication the root processes would have to gather the flow information to hand 
over from their own processes, and after the peer-to-peer communication would have 
to broadcast the obtained information back to their processes. The here reported solu- 
tion avoids this additional communication by direct communication of the neighboring 
processors on the interface. 

The initial handshake routine establishes the direct communication (figure 3). First, for 
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Setamlna no. and location of points on local procesaor which 
naad infoznation 

FOR 1 to total no. of codes 

FOR 1 to total no. of paar processes of peer code 

IRZCV no. of re<iuestad points for peer process 

SEND no. of reauested points for local process 

WAIT for IBECV to ccnplete 

FOR 1 to total no. of codas 

FOR 1 to total no. of peer processes of iMer code 

IRECV data atucture containing requested 
points from pear proc 

SEND data structure containing raouested points 
from local proc to peer proc 

N&IT for IRECV to convlete 

Determine idiich points from iMar process lay inside the local 
domain and can be served 

FOR 1 to total no. of codas 

FOR 1 to total no. of peer processes of peer code 

FOR 1 to total no. of codes 

FOR 1 to total no. of peer processes of peer code 

IF no. of local points served by 
X>eer process > 0 

fals>v ' ^     true 

IRECV data Btructura of points which lie inside the 
domain of the peer process and can be served 

IF no. peer points served by 
local process > 0_ 

falsX, •"  true 

SEND data structure of points which lie inside the 
local domain and serve the peer process 

Nv^IF no. of local points served by 
^v peer process > 0 

falsa\^    - true 

MMT for IRECV to ccoplete 

Check,  if all local points are served by peer processes 

FIGURE 3. Structure Chart for the initial handshake to establish direct communication 
between interface processors. 
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FOR 1 to total no. of codes 

FOR 1 to total no. of peer processes of peer code 

IF no. of local points served by_ 
peer process > 0 

falsdv ■      true 
IRECV data structure containing flow variables of 
points served by peer process  

IF no. peer points served by 
^local process > 0 

fals»< ■ ' true^ 
SEND data structure containing flow variables of 
points serving the peer process 

WAIT for IRECV to conplete 

Transform flow data of peer process to local standards 
(non-dinensionalization etc.) 

FIGURE 4. Structure Chart for the communication of flow data between iterations. 

each code each processor has to identify all the points, which need flow information from 
the peers to define its interface boundary condition. The location of each of these points 
has to be stored in a data structure containing three integers and three double precisions. 
The three integers are an 'ip' number, which determines what kind of flow variables are 
requested for this point, an 'id'number, which contains a unique identification number for 
each point, and a 'flow so/uer'number denoting the flow solver requesting this point. The 
three real numbers contain the x, y, z-coordinates of the point in Cartesian coordinates 
using metric dimensions. 

The handshake takes place in four steps. First, each processor communicates the num- 
ber of points in its own domain requesting flow data to each processor of a peer code. 
This allows each code to dynamically allocate arrays to store received information. In 
the second step each processor receives a data package containing the location of the 
requested points from each peer processor that request a non-zero number of points. 

In an intermediate step, each processor identifies, whether a requested point lies within 
its own domain and can be served. During the identification, the interpolation schemes 
required to obtain the data for this point are also being determined and stored for later 
use. 

In the third communication step each processor communicates to all peer-processes 
requesting data the number of points found. This allows again to djmamically allocate 
arrays for the following fourth step. In the fourth communication step, each processor 
sends out an array to each peer processor it can serve. The array consists of two integers 
containing ip and id of the point. Finally, each processor determines whether all of its 
requested point can be served by peer processors. 

3.2. Communication 

The communication of flow data between iterations is rather straight-forward once the 
handshake is completed (figure 4). Since it is known to every processor what kind of data 
has to be provided to which peer processor, and from which peer processor flow data 
can be expected, the data packages can be sent directly without going through the root 
process. 

Each processor has to compile the data to be sent into a data structure. This data 
structure may vary between different flow solvers and has to be defined beforehand. 
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However, as a standard data structure a set of 7 variables has been established. These 
variables contain p, pu, pv, pw, pE, k, and ut in this order, with p being the density, u, v, w 
the velocity components in x—, y—, -z-direction, respectively, E the total Energy, k the 
turbulent kinetic energy, and i/f the eddy viscosity. This set of variables gives the free- 
dom to choose between several RANS turbulence models without changing the interface 
routines, e.g. boundary conditions can be defined from this set of data for k — e and k — w 
turbulence models likewise. More sophisticated data sets are possible steered by the data 
structure sent in the handshake routine. 

4. Boundary conditions 

4.1. LBS Boundary conditions 

The formulation of unsteady LES boundary conditions from ensemble-averaged RANS 
data is one of the biggest challenges in the coupling of two flow solvers based on such 
different mathematical approaches Uke LES and RANS. Unsteady LES boundary con- 
ditions have to be generated which fulfill the statistical properties of the time-averaged 
solution delivered by the RANS flow solver. Even if an unsteady RANS computation is 
assumed, the time-step of the unsteady RANS computation is usually larger than the 
LES time-step by several orders of magnitude. The LES boundary conditions then have 
to correspond to the ensemble-averages delivered by the RANS computation. 

4.1.1. LES inflow boundary conditions 

Specifying inflow conditions for LES from upstream RANS data is a similar problem 
as specifying LES inflow conditions from experimental data, which is usually given in 
time-averaged form, and has therefore been investigated in some detail in the past. A 
method that has been successfully applied is to generate a time-dependent database for 
the inflow velocity fields by performing a separate LES simulation, in which virtual body 
forces are appUed to achieve the required time-averaged solution (Pierce & Moin, 1998b). 
However, since unsteady RANS flow solvers may deliver unsteady ensemble-averaged 
velocity profiles, a generation of such a data-base is impossible, since the mean velocity 
field at the inlet is unknown. 

The here proposed LES inlet conditions use a data-base created by a separate LES 
computation and modifies then its statistical properties in order to match the RANS 
solution: 

Wt,LEs(t) = Ut,RANS + (Ui,DB(0 " Ui.Ds) ' J^^*^^ (4.1) 

I II V w DB 

/// 

with RANS denoting the solution delivered by the RANS computation and DB properties 
delivered by the database. Term // computes the velocity fluctuation of the database, 
while term III scales the fluctuation to the actual value needed. When added to term I a 
meaningful unsteady inlet condition is recovered. In order to keep corrections small, the 
generated inflow data-base should have statistical properties close to the actual prediction 
by the RANS flow solver, although it has been shown, that even very generic data-bases 
are able to recover meaningful LES inflow conditions (Schliiter, 2002). 
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4.1.2. LES outflow boundary conditions 

In order to take upstream effects of the downstream flow development into accoimt, 
LES outflow conditions have to be defined that can impose mean flow properties on the 
unsteady LES solution matching the statistical properties delivered by a downstream 
RANS computation. A method, that has been used in the past, employs virtual body 
forces to drive the mean velocity field of the LES solution to a RANS target velocity field 
(Schliiter and Pitsch, 2001, Schliiter et al, 2002). 

Fi{x) = —(ui,RANs(a:) - Ui,LBs(a;)), (4-2) 

with Ui^nAKs being the solution of the RANS flow solver computed in an overlap region 
between LES and RANS domain, and Ui,LEs is a time-average of the LES solution over 
a trailing time-window. This body force ensures that the velocity profiles at the outlet 
of the LES domain fulfill the same statistical properties as the velocity profiles in an 
overlap region computed by a RANS simulation downstream. This makes it possible to 
take upstream effects of the downstream flow into account. 

4.2. RANS boundary conditions 

The specification of RANS boundary conditions from LES data is essentially straight- 
forward. The unsteady LES flow data is time-averaged over the time-step applied by the 
RANS flow solver and can be employed directly as a boundary condition. 

In the cmrent study, the compressible formulation of the RANS flow solver and the 
quasi-incompressible low-Mach-number formulation of the LES code posed a challenge. 
While the RANS code allows for acoustic waves to propagate in the limits of the RANS 
formulation and its turbulence models, the density field of the LES solution is entirely de- 
fined by chemical reactions and not by acoustics. This leads to the necessity of the RANS 
infiow and outflow condition to be able to fluctuate the density field at the boundaries 
in order to let acoustic waves leave the domain. 

Currently, the mass-flux vector at every point of the inlet is being specified corre- 
sponding to the value dehvered by the LES computation. This means pu, pv, pw, (and 
T) are imposed at the boundaries. This allows the density p to fluctuate to account for 
the passing of acoustic waves. The velocity components u, v, w are adjusted accordingly 
in order to conserve the mass-flux. Variations of p are in the order of < 2%. 

Other boundary conditions are possible, especially Navier-Stokes characteristic bound- 
ary conditions (Poinsot and Lele, 1992) which have a more acciurate treatment of acoustic 
waves. 

5. Validation of the interface 

In order to validate the interface and the boundary conditions, a LES flow solver and 
a RANS flow solver were equipped with the interface and the newly developed boundary 
conditions. Integrated flow computations were performed in a LES-LES and LES-RANS 
environment. 

5.1. The LES flow solver 

The LES flow solver chosen for this work, is a code developed at the Center for Tur- 
bulence Research at Stanford by Pierce and Moin (Pierce & Moin, 1998a). The flow 
solver solves the filtered momentum equations with a low-Mach number assumption on 
an axi-symmetric structiured single-block mesh. A second-order finite-volume scheme on 
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FIGURE 5. Geometry for integrated LES/RANS computations: a) full geometry, b) reduced 
LES domain, c) schematic splitting of domain to two computational domains 

a staggered grid is used (Akselvoll k. Moin, 1996). The subgrid stresses are approximated 
with an eddy-viscosity approach, where the eddy viscosity is determined by a dynamic 
procedure (Germano et al, 1991, Moin et al, 1991). 

5.2. The RANS flow Solver 

The RANS flow solver used for this investigation is the TFLO code developed at the 
Aerospace Computing Lab (ACL) at Stanford. The flow solver computes the unsteady 
Reynolds Averaged Navier-Stokes equations using a cell-centered discretization on arbi- 
trary multi-block meshes (Yao et al, 2000). 

The solution procedure is based on efiicient explicit modified Runge-Kutta methods 
with several convergence acceleration techniques such as multi-grid, residual averaging, 
and local time-stepping. These techniques, multi-grid in particular, provide excellent nu- 
merical convergence and fast solution turnaround. Turbulent viscosity is computed from a 
k—uj two-equation turbulence model. The dual-time stepping technique (Jameson, 1991, 
Alonso et al, 1995, Belov et al, 1996) is used for time-accurate simulations that account 
for the relative motion of moving parts as well as other sources of flow unsteadiness. 

5.3. Numerical experiment: swirl flow 

The computation of a swirl flow presents a challenging test-case in order to validate the 
interface and the boundary conditions, due to the complexity of the flow and its sensitivity 
to inflow and outflow parameters. Yet, this test case is simple enough to perform a LES 
computation of the entire domain in order to obtain an 'exact' solution, which serves as 
a reference solution to assess the accuracy of integrated computations. 

A swirl flow at an expansion with a subsequent contraction three diameter D down- 
stream of the expansion is considered (figure 5a). Inlet velocity profiles are taken from 
an actual experiment in a similar geometry (Dellenback et al, 1988). The swirl number 
of the flow is 5 = 0.3, which is just supercritical, meaning that vortex breakdown takes 
place and a recirculation zone develops. The extension and strength of this recirculation 
zone is strongly influenced by the presence of the downstream contraction. 

In a first computation the entire domain is computed by LES. A first computation 
of this study computed the entire domain. All subsequent computations assume, that 
this domain is to be computed by two or more separate flow solvers. The geometry is 
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FIGURE 6. Integrated LES/LES computations. Velocity components for different downstream 
positions, circles: LES of full geometry (figure 5a), dashed line: LES of expansion (figure 5b), 
solid line: integrated LES-RANS computation (figure 5c) 

split in two computational domains with a short overlap region. The expansion is to 
be computed with the LES code, while the contraction is computed either by a second 
instance of the LES code or by the RANS code (figure 5c). If the coupling of the two 
codes is done appropriately, then this coupled simulation should recover the solution of 
the LES performed for the entire domain. 

5.4. Integrated LES/LES computations 

The first test for the interface and the LES boundary conditions is to use a LES flow 
solver for the second part of the domain. In these integrated LES/LES computations the 
same LES flow solver is hence used twice. The time-interval can be chosen arbitrarily 
when communication between the two instances of the flow solver takes place. Each LES 
computation can chose a time-step to advance the solution between two iterations of 
its own, only limited by the CFL condition in its own domain. After several iterations, 
after both LES computations have computed the same physical time-span, an exchange 
of time-averaged quantities, the mean velocities u, v, w and the turbulent kinetic energy 
k, takes place. While it would have been possible in the case of two LES computations 
to exchange more information, especially about turbulent quantities, it was aim to prove 
the validity of the LES boundary conditions from section 4.1. 

Figure 6 shows the velocity profiles for three different computations. The velocity 
profiles denoted by the circles represent the LES computation of the entire domain (figure 
5a) and hence, the target for the integrated computations. 

To show the importance of integrated computations for this case, the dashed lines show 
the velocity profiles of a LES computation of the expansion, without the computation 
of the contraction by a second flow solver (figure 5b). It can be seen, that the obtained 
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FIGURE 7. Integrated LES/RANS computations. Velocity components for diflFerent downstream 
positions, circles: LES of full geometry (figure 5a), dashed line: LES of expansion (figure 5b), 
solid line: integrated LES-RANS computation (figure 5c) 

velocity field differs substantially from the first simulation, and hence, the influence of 
the downstream contraction can not be neglected. 

The solid lines in figure 6 show the integrated LES/LES-computation using two LES 
solvers for the two domains (figure 5c). The location of the interface is denoted with a 
dot-dashed Une, meaning, that the velocity profiles on the left-hand side of the interface 
are computed with the first LES computation and the profiles on the right hand-side 
from the second LES. The LES computation of the subsequent contraction deUvers a 
mean flow field which is used to correct the outflow conditions of the upstream LES. As 
a result, the velocity profiles of the integrated LES/LES-computation tend towards the 
velocity profiles of the LES of the entire domain. The inlet conditions of the second LES 
are defined from the mean velocity profiles obtained firom the upstream LES. 

In the integrated LES/LES computation, the velocity fluctuations u''^,v'^,w'^ are 
handed over as the turbulent kinetic energy A; = 0.5 ■ (w'^ + v'^ + w'^), and reconstructed 
asu; 12 ■ 2fe/3. This explains a mismatch in the axial velocity fluctuations at the interface. 
Although it would have been possible in integrated LES/LES computations to hand over 
the entire Reynolds-stress tensor, the usage of the RANS standard data set allows better 
comparison with the following computations. 

5.5. Integrated LES/RANS computations 

The final step in assessing integrated flow computations is to perform a simulation, 
where the second LES flow solver is replaced by a RANS flow solver. The swirl flow at 
the expansion is computed by the LES flow solver while the contraction is computed 
with the RANS flow solver TFLO. 

Figure 7 shows the mean velocity profiles obtained by an integrated LES-RANS com- 
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putation. The circles show the LES of the entire domain, and, for comparison, the dashed 
line represents the LES solution of the swirl flow without the computation of the con- 
traction. 

The integrated LES-RANS computation (solid hnes) essentially matches the velocity- 
profiles from the LES of the entire domain. This means, that integrated LES-RANS com- 
putations are able to successfully predict complex flows such as the swirl flow considered 
here. 

The time advantage of integrated LES-RANS computations is strongly dependent on 
the chosen RANS time-step. For the present case, the RANS time step was chosen ap- 
proximately 2 • 10^ times longer than the LES time-step limited by the CFL condition. 
This resulted in a decrease of computational costs by a factor of w 2. 

6. Conclusions 
The increasing complexity of flow problems investigated with numerical methods calls 

for the integration of existing flow solvers, where each of the flow solvers is optimized to 
address a particular problem. In this study, an interface was developed and implemented 
that enables two or more flow solvers to run simultaneously and to exchange data at the 
overlapping boundaries. 

The interface was tested on a swirl flow at an expansion with a subsequent contrac- 
tion, which has been split into two parts, the upstream expansion and the downstream 
contraction part. Each of these is computed by a separate flow solver in a fully coupled 
simulation. The integrated LES-LES and LES-RANS computations have demonstrated 
to jdeld the same flow prediction as a LES computation of the entire domain. 

The LES boundary conditions developed in earUer work were put to a real-time test. 
RANS boundary conditions were adapted to accommodate the different approaches 
(compressible/low-Mach number) on both sides of the interface. 

The computation reported in this work proves the feasibility, accuracy and efficiency 
of integrated LES/RANS computations. LES and RANS flow solvers were successfully 
combined in order to improve the efficiency of the flow prediction without compromis- 
ing the accuracy. This is an important step towards the appUcation of this concept to 
industrial apphcations. 
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Grid-independent large-eddy simulation in 
turbulent channel flow using three-dimensional 

explicit filtering 

By Jessica Gullbrand 

1. Motivation and objectives 
In traditional large-eddy simulation (LES) solution methods, the computational grid 

and discretization operators are considered as "implicit" filtering of the Navier-Stokes 
equations. This LES procedure divides the turbulent flow field into resolved and unre- 
solved scales, where the unresolved scales must be modeled. 

When explicit filtering is used in LES, the filtering procedure of the governing equations 
is separated from the grid and discretization operations. This separation now divides the 
flow field into resolved filtered scale (RFS) motions, and subfilter-scale (SFS) motions. 
The SFS is itself divided into a resolved part (RSFS) and an unresolved part (USFS) 
(Zhou, Brasseur & Juneja 2001): see figure 1. The RFS motion is obtained by solving the 
filtered Navier-Stokes equations. The RSFS motions can theoretically be reconstructed 
from the resolved field and occur due to the use of a smooth (in spectral space) filter 
function. The USFS motions consist of scales that are not resolved in the simulation and 
need to be modeled. The explicitly-filtered governing equations were recently studied by 
Carati, Winckelmans & Jeanmart (2001). 

The smallest resolved scales are often used to model the turbulence-closure term in 
LES, and therefore it is of great importance to capture these scales to high accuracy. The 
accuracy of the LES solution can be increased by using high-order numerical schemes. 
High-order methods will increase the accuracy of the important large energy-containing 
scales, but the small scales will still be contaminated with truncation errors when using 
non-spectral methods. These errors can be reduced or eliminated by using explicit filtering 
in LES (Lund 1997). This can be achieved either by using a large ratio between the filter 
width and the cell size, or by using a higher-order method, then the ratio need not be 
so large. In recent a ■priori studies by Chow & Moin (2003), a minimum ratio of filter 
width to cell size was determined to prevent the numerical error from becoming larger 
than the contribution from the turbulence closure term. They concluded that a fourth- 
order scheme should be used with a filter width of at least twice the cell size, and for a 
second-order scheme the filter width should be at least four times the cell size. 

Using explicit filtering and high-order numerical schemes requires the filter functions to 
be commutative to at least the same order as the numerical scheme. The differentiation 
and the filtering operations miost commute, to ensure that the filtered Navier-Stokes 
equations have the same structure as the unfiltered equations. In general, the operations 
do not commute when a variable filter width is used, as is needed in inhomogeneous fiow 
fields. Ghosal & Moin (1995) showed that the commutation error is of the same order as 
the contribution from the turbulence closure term, O(A^), where A is the filter width. 
Therefore, this error must be reduced or efiminated to avoid significant effects on the 
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LES solution. A general theory for constructing discrete high-order commutative filters 
was proposed by Vasilyev, Lund & Moin (1998). 

Most previous studies of LES using explicit filtering in turbulent channel flow have 
used filtering in two dimensions (the homogeneous directions) and only a few studies have 
applied filtering in all three dimensions. Only investigations performed using smooth fil- 
ter functions are discussed here. Two-dimensional filtering was investigated by PiomeUi, 
Moin & Ferziger (1988), Najjar & Tafti (1996), Sarghini, PiomeUi & Balaras (1999), and 
Gullbrand k Chow (2002) among others. Studies using three-dimensional filtering were 
performed by Cabot (1994), Gullbrand (2001), Winckelmans, Wray, Vasilyev & Jeanmart 
(2001), and Stolz, Adams & Kleiser (2001). However, most of the studies using three- 
dimensional filtering did not focus on minimizing the effect from the numerical errors. 
If care is not taken to reduce the errors, they may be larger than the contribution from 
the turbulence closure models. Therefore, it will not be possible to separate the effects 
fi-om the numerics and the behavior of the turbulence closure models. Cabot (1994), for 
example, used a second-order finite-difference scheme and second-order filter functions 
with a ratio of two between the filter width and cell size. The error from the second-order 
scheme is probably larger than the turbulence closure contribution due to the small ratio 
of filter width to cell size used and, in addition, a second-order commutation error is 
present. Therefore, the LES results are highly affected by the numerical errors. Winckel- 
mans et al. (2001) used a high-order finite-difference scheme (fourth-order) but applied a 
second-order filter with a ratio of filter width to cell size of \/6. The use of a second-order 
filter introduces commutation errors of second-order which are of the same order as the 
turbulence model contribution in the simulations. A spectral method was used by Stolz 
et al. (2001), together with fourth-order commutative filter functions with a filter-grid 
ratio of approximately 1.5. The use of spectral methods clearly reduces the numerical 
errors in the simulation when compared to the studies previously mentioned. However, 
the use of explicit filtering in spectral methods is questionable. In spectral methods, the 
RSFS term can be exactly reconstructed from the filtered field, and truncation errors are 
not present in the small scales. Therefore, there is no need for explicit filtering when using 
spectral methods (Winckelmans & Jeanmart 2001). In addition, spectral methods can 
be applied only to specific geometries and cannot be used in flow fields of engineering in- 
terest, so they are not considered here. Gullbrand (2001) used fourth-order commutative 
filter functions, with a ratio of two between the filter width and cell size, in a fourth-order 
finite-difference code. The commutation error is then of the same order as the numerical 
scheme, which is of higher order than the turbulence closure contribution. According to 
the study by Chow & Moin (2003), the filter-grid ratio used ensures that the contribution 
from the turbulence closure term is larger than the numerical errors from the scheme. 
Thus, the fourth-order scheme using fourth-order commutative filters with a filter width 
of at least twice the cell size creates a numerically-clean environment where turbulence 
closure models can be tested and validated. 

In this paper, turbulence closure models are evaluated using the "true" LES approach 
in turbulent channel flow. The study is an extension of the work presented by Gullbrand 
(2001), where fourth-order commutative filter functions are applied in three dimensions in 
a fourth-order finite-difference code. The true LES solution is the solution to the filtered 
governing equations. The solution is obtained by keeping the filter width constant while 
the computational grid is refined (figure 2). As the grid is refined, the solution will 
converge towards the true LES solution. The true LES solution will depend upon the 
filter width used, but be independent of the grid resolution. In traditional LES, because 
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the filter is implicit and directly connected to the grid spacing, the solution converges 
towards a direct numerical simulation (DNS) as the grid is refined, and not towards 
the filtered Navier-Stokes equations. The effect of turbulence closure models is therefore 
diflicult to determine in traditional LES because, as the grid is refined, more length scales 
are resolved and less influence from the models is expected in the LES results. In contrast, 
in the true LES formulation, the explicit filter eliminates all scales that are smaller than 
the filter cutoff, regardless of the grid resolution. This ensures that the resolved length- 
scales do not vary as the grid resolution is changed. A resolution requirement for the true 
LES is that the cell size must be smaller than or equal to the cutoff length scale of the 
filter function. 

The turbulence closure models investigated are the dynamic Smagorinsky model (DSM), 
the dynamic mixed model (DMM), and the dynamic reconstruction model (DRM). These 
turbulence models were previously studied using two-dimensional explicit filtering in tur- 
bulent channel fiow by Gullbrand k. Chow (2002). The DSM by Germano, Piomelli, Moin 
& Cabot (1991) is used as the USES model in all the simulations, to be able to evaluate 
different reconstruction models for the RSFS stresses. The DMM (Zang, Street k Kos- 
eff 1993) consists of the scale-similarity model (SSM) by Bardina, Ferziger & Reynolds 
(1983), which is the RSFS model, in linear combination with the DSM. In the DRM, the 
RSFS stresses are modeled by using an estimate of the unfiltered velocity in the unclosed 
term, while the USES stresses are modeled by the DSM. 

2. Governing equations 
The governing equations for an incompressible flow field are the continuity equation 

together with the Navier-Stokes equations, 

9ui _ duj     dujUj _     dp        1     d^Uj , 

dxi~    ' dt       dxj dxi     Rcr dxjdxj ' ^ ' ^ 

Here Ui denotes velocity, p pressure and Rsr the Reynolds number based upon friction 
velocity, UT, and channel half-width, h. Einstein summation is appHed to repeated indices. 

In LES, the governing equations are filtered in space. The filtering procedure is applied 
to the flow-field variables according to 

/oo 
G{x,x',A)ui{x',t)dx' , (2.2) 

-oo 

where G is the filter function and A is the filter width. 
Hence, the filtered governing equations can be written as 

9ui _ Quj     ^^j ^ dp        1     d'^Uj       dfjj 

dxi        ' dt       dxj       dxi     Rcr dxjdxj      dxj 

where the tiu'bulent stresses are defined as TJJ = u^uj — UiUj. The filtered equations are 
not closed because of the nonUnear term uiuJ. Note that a second filtering is applied to 
the convective and turbulent stress terms (the nonlinear terms) in (2.3), to ensure that 
the wavenumber content is the same for every term in the equations. The product of the 
nonlinear terms (uiUj) introduces high wavenumbers that are beyond the wavenumber 
content of the filtered velocity field (ui). To prevent these high wavenumbers to influence 
the resolved wavenumbers, the nonlinear terms are exphcitly filtered. A potential draw- 
back of (2.3) is that the resulting equation is in general not Galilean-invariant. However, 
if an appropriate turbulence closure model is used, the problem can be avoided. 
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3. Subfilter-scale modek 

The turbulent flow field is divided into RFS motions and SFS motions when explicit 
filtering of the Navier-Stokes equations is applied. In figure 1, a sketch of a typical energy 
spectrum is shown. The solid fine represents the energy captured by a fully resolved DNS, 
while the dashed fine represents the LES energy. The vertical Une at keg shows the filter 
cutoflF in the LES. The filter cutoff is determined by where the filter function goes to zero 
and stays zero (in spectral space), i. e. no wavenumbers higher than the cutoff wavenumber 
are resolved in the simulation. The filter cutofi' can be seen in figure 2. All wavenumbers 
smaller than the filter cutoflF wavenumber are resolved in the simulations. However, they 
are damped by the filter function and have to be recovered by an inverse filter operation. 
This corresponds to the RSFS portion of the energy spectrum. The same terminology for 
the RSFS and the USES was previously suggested by Zhou et al. (2001). In theory, the 
RSFS can be exactly recovered, but this is only possible when using spectral methods. 
If non-spectral methods are applied, there are numerical errors (NE) associated with 
the high wavenumbers and thus the recovered scales are contaminated with errors. The 
unresolved portion of the spectrum (the USES) consists of wavenumbers that are higher 
than the filter cutoff wavenumber. The USES motions need to be modeled. The USES 
portion of the spectrum was previously called the subgrid-scale (SGS) portion in the 
study by Gullbrand & Chow (2002). However, the name is not valid here, since it is the 
filter function that determines the cutoff location and not the computational grid. The 
vertical lines in the figure represent the grid cutoff wavenumbers for two grid resolutions. 
The coarse grid cutoff, keg, happens to coincide with the filter cutoff, while the fine grid 
cutoff, kfg, is located in the USES portion of the spectrum. However, the USES motions 
are the same in the two simulations, since the filter cutoff determines the wavenumbers 
resolved. 

To recover the RSFS stresses, the iterative method of van Cittert (1931) is used in 
this study. This method was previously used by Stolz et al. (2001) in their approximate 
deconvolution procedure to reconstruct the unfiltered velocity field Ui from the filtered 
field Ui. To fully recover the unfiltered velocity, an infinite number of iterations is needed. 
However, since this is not practical in numerical simulations, the unfiltered velocity field 
is approximated by a finite number of iterations. By varying this number, different models 
can be obtained to model the RSFS stresses. 

Here, low-level reconstruction (the SSM) and reconstruction of level five using the 
approximate deconvolution model (ADM) by Stolz et al. (2001) are used to model the 
RSFS stresses. Further details of the reconstruction used are found in 3.3. In order to 
compare the different RSFS models, the same USES model (the DSM) is used in all the 
simulations. The combinations of RSFS and USES models used are described below. 

3.1. Dynamic Smagorinsky Model 

The DSM is a widely-used eddy viscosity USES model (Smagorinsky 1963): 

Tij = -2ueS,j = -2(CA)2i5|5,^., (3.1) 

where Ue is the eddy viscosity, A the filter width and 5^ the strain rate tensor. The model 
parameter (CA)^ is calculated dynamically (Germano et al. 1991) using the least-square 
approximation of Lilly (1992). The model parameter is calculated by the same dynamic 
procedure as described in the papers previously mentioned. The explicit filtering of the 
nonlinear terms is not considered when the model parameter is calculated. The filtering 
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FIGURE 1. Schematic of velocity energy spectrum showing partitioning into resolved filtered 
scale (RFS), resolved subfilter-scale (RSFS), and unresolved subfilter-scale (USES) motions. The 
numerical error (NE) region, denoted by  , is a subregion of the RSES.  represents 
DNS energy, LES energy, and filter cutoff. The vertical line at keg represents the 
filter cutoflF wavenumber, which corresponds to the smallest resolved wavenumber for the coarse 
grid. The vertical line at kfg represents the wavenumber cutoff for the fine grid. 

enters only in the final stage of the process, when nj is introduced into the filtered 
Navier-Stokes equations. 

3.2. Dynamic Mixed Model 

Low-level reconstruction of the RSFS stresses can be performed by using the scale- 
similarity model proposed by Bardina et al. (1983). The SSM is obtained by substituting 
Ui w Ui into the definition of the turbulence stress tensor, Ty. Here the RSFS stress is 
modeled by the scale-similarity term and the DSM is used as the USFS model: 

(3.2) Tij = {uiUj - UiUj) - 2(CA)2|5|5,^. , 

to form the DMM. In the code, the SSM term is discretized with the same numerical 
scheme as the convective terms. 

3.3. Dynamic Reconstruction Model 

High-order reconstruction of the RSFS stress tensor can be achieved by the iterative 
deconvolution method of van Cittert (1931). The unfiltered quantities can be derived by 
a series of successive filtering operations (G) applied to the filtered quantities with 

Ui = Ui + {I-G)*Ui + {I-G)* {{I-G)*Ui) + ■ (3.3) 

where / is the identity matrix. The truncation order of the expansion determines the 
level of deconvolution, as discussed by Stolz et al. (2001). If the series includes the terms 
explicitly shown in (3.3), it corresponds to reconstruction of level two. An approximate 
unfiltered velocity (u*) is obtained by the truncated series, u* is substituted into the 
unclosed term Uiuj, which results in ufuj. This reconstruction was used by Stolz et al. 
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(2001) to form the ADM. Here the ADM is used in linear combination with the DSM, 

Ty = u>* - UiUj - 2(CA)2|S15,^. , (3.4) 

which is called the dynamic reconstruction model (DRM). In the simulations, the same 
numerical scheme is used for the convective terms and the RSFS terms. The DRM yields 
a Galilean-invariant expression of (2.3), since the nonlinear terms W^j on the right-hand 
side and left-hand side of the equation cancel each other. A reconstruction series of level 
five is used in this study. 

4. Filter functions 

It is important that the explicit filter and the test filter, which is used in the dynamic 
procedure of the DSM, have similar shapes, since the dynamic procedure is based upon 
the scale-similarity assumption in the Germano identity (Germano et al. 1991). In the 
simulations presented here, the same filter function is used in all the simulations. It is 
only the filter width that is varied between the simulations. The base filter is a fourth- 
order commutative filter function with filter width 2Acg, where Ac,, is the grid cell size 
for the coarse-grid resolution. The computational domain and grid resolutions used in 
the simulations are discussed in section 6. It is not straightforward to determine the filter 
width of a high-order filter and different methods were studied by Lund (1997). Here, one 
of the methods suggested by Lund is applied. The filter width is defined as the location 
where the filter function reaches a value of G(fc) = 0.5. The filter function used in the 
simulations was developed by Vasilyev et al. (1998) and is 

— 1 9 19 1 

where the filter weights for <j>i±,2 are zero. The smooth filter function is shown in spectral 
space in figure 2. In the near-wall region, asymmetric filters are used in the first three 
grid points for the coarse grid in the wall-normal direction. 

In the simulations, the ratio of the test-filter width to the expUcit-filter width is chosen 
to be two, as proposed by Germano et al. (1991) for the DSM. The test filter is used 
only in the calculation of (CA)^ in the DSM, while the explicit filter function is used to 
determine the RSFS contribution through either the SSM or the ADM. The ratio between 
the explicit-filter width and the cell size for the coarse grid is two and for the fine grid 
(128,97,96), the ratio is four. This preserves the effective filter width as the grid resolution 
is increased, as seen in figure 2. The vertical line at low wavenumber represents the grid 
cutoff (keg) for the coarse-grid resolution. The filter cutoff wavenumber is the same as 
the grid cutoff for the coarse grid. For the fine grid, the filter cutoff is held fixed, resulting 
in a separation between the filter cutoff and grid cutoff (kfg) locations. The grid-cutoff 
wavenumbers are also shown schematically in figure 1. The ratio of two between the filter 
width and the cell size for the coarse grid was chosen to prevent the numerical error from 
the finite-difference scheme firom becoming larger than the contribution of the turbulence 
closure model (Ghosal 1996; Chow k Moin 2003). 

5. Solution algorithm 

In the computational code, the spatial derivatives are discretized using a fourth-order 
central-difference scheme on a staggered grid. The convective term is discretized in the 
skew-symmetric form (Morinishi, Lund, Vasilyev & Moin 1998; Vasilyev 2000) to ensure 
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0.5 
filter width 

Acgk/-K 

FIGURE 2. The base filter function in spectral space and its relation to the computational grid 
resolutions.   : filter function,    : filter width, : coarse grid resolution, and 
 . fine grid resolution. The wavenumber keg represents the grid cutoff wavenumber for the 
coarse grid, while k/g represents the grid cutoff wavenumber for the fine grid. 

conservation of turbulent kinetic energy. The equations are integrated in time using 
the third-order Runge-Kutta scheme described by Spalart, Moser & Rogers (1991). The 
diffusion terms in the wall-normal direction axe treated implicitly by the Crank-Nicolson 
scheme. The splitting method of Dukowicz & Dvinsky (1992) is used to enforce the 
solenoidal condition. The resulting discrete Poisson equation for the pressure is solved 
in the wall-normal direction using a pentadiagonal matrix solver. In the homogeneous 
directions, the Poisson equation is solved using a discrete Fourier transform. Periodic 
boundary conditions are applied in the streamwise and spanwise homogeneous directions, 
with no-slip conditions at the channel walls. A fixed mean pressure gradient is used to 
drive the flow. The computational code is compared to a second-order finite-difference 
code in Gullbrand (2000) and GuUbrand k Chow (2002). 

6. Turbulent channel flow simulations 
The Reynolds number is Rer = 395 and the computational domain is (27r/i, 2h, Trh) 

in (x, y, z) where x is the streamwise direction, y the wall-normal direction, and z the 
spanwise direction. The computational grid is stretched in the y-direction by a hyperbohc 
tangent function 

„«,„_-(iazM   , = „ ,,     ^ ,e.) 
where iVg is the number of grid points in the waU-normal (j) direction and 7 is the 
stretching parameter, which is set to 2.75. Two computational grids are used; (64,49,48), 
which corresponds to one-quarter of the DNS resolution in each spatial direction, and 
(128,97,96), which is half the number of DNS grid points in each direction. The cell size 
for the coarser grid resolution is Ax+ = 39, Az+ = 26, and 0.4 < Ay+ < 45. The finer 
resolution corresponds to the cell size Ax"*" = 19, Az+ = 13, and 0.2 < Ay+ < 23. The 
'plus' values (wall units) are obtained by normalizing the length scale with the friction 
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FIGURE 3. Mean velocity profiles using different turbulence closure models. ——: DNS, : 
DSM (64,49,48), : DSM (128,97,96), : DMM (64,49,48),  : DMM (128,97,96), 
 : DRM (64,49,48), and : DRM (128,97,96). 

velocity and the kinematic viscosity (v). A statistically stationary solution is obtained 
after 30 dimensionless time units, and thereafter statistics are sampled during 15 time 
units. The time is normalized with the friction velocity and channel half-width. The LES 
results are compared to the unfiltered DNS data of Moser, Kim & Mansour (1999). 

7. Results 

Figure 3 shows mean velocity profiles from simulations using different RSFS models and 
different grid resolutions. The filter width is fixed, while the grid resolution is increased. 
The goal is to obtain a grid-independent LES solution so that the behavior of turbulence 
closure models can be evaluated. The changes in the predicted mean velocity profiles 
as the grid resolution is increased are only minor, indicating that the LES solutions are 
converged. The mean velocities predicted by the DSM are much higher than the DNS 
results. The DMM improves the results slightly, while the best agreement with the DNS 
data is predicted by the DRM. This shows the need for a RSFS model when a smooth 
explicit filter function is applied. 

The streamwise velocity fluctuations in figure 4 show the same trend as the mean 
velocity profiles. However, the differences in the results as the grid is refined are slightly 
larger than for the mean velocity. The DSM shows the largest overprediction of the peak 
streamwise velocity fluctuations. The peak value decreases shghtly as the grid is refined. 
This is also observed for the DMM and the DRM. It should be noted that the DRM 
actually predicts a peak value that is lower than the DNS data. This is very unusual 
in LES, because most models will overpredict the streamwise velocity fluctuations and 
underpredict the wall-normal and spanwise fluctuations. However, an underprediction of 
all velocity fluctuations is to be expected in LES, since LES can be considered as filtered 
DNS, and if the DNS results filtered, the peak values are expected to decrease. 

As pointed out by Winckelmans, Jeanmart & Carati (2002), when LES tiu-bulence 
intensities (or velocity fluctuations) are compared to DNS data, the LES intensities should 
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FIGURE 4. Velocity fluctuations in the streamwise |u'|, wall-normal \v'\, and spanwise \w'\ direc- 
tions.  : DNS, : DSM (64,49,48), : DSM (128,97,96), : DMM (64,49,48), 
  : DMM (128,97,96), : DRM (64,49,48), and : DRM (128,97,96). 

include the contribution from the turbulence closure models. However, if a traceless 
turbulence model like the DSM, or partially-traceless models as the DMM and DRM, 
are used, it is only the reduced (deviatoric) turbulence intensities of both the DNS and 
the LES that shovild be compared. The reduced intensities represent the deviation from 
isotropy, and the streamwise turbulence intensities are given by 

—Rx : u'u' - l/3{u'u' + v'v' + w'w'). 

The reduced turbulence intensities are compared in figure 5. In this paper, both the 
turbulence intensities and the velocity fluctuations are studied. The reason for inves- 
tigating both quantities is to show that incorrect conclusions may have been made in 
previous studies concerning model behavior, since it is usually the uncorrected velocity 
fluctuations that are compared. As observed in figure 5, the magnitudes of the turbulence 
intensities show a consistent behavior for all three intensities. The DSM shows the largest 
overprediction of the peak value. The DMM decreases the predicted peak values sUghtly, 
while the DRM predicts peak values that are lower than the DNS. As mentioned earfier, 
an underprediction of the peak value is expected in LES. When the grid is refined, the 
peak values decrease sUghtly for all the models studied. The behavior of the turbulence 
intensities is not consistent with the observations made for the velocity fluctuations. For 
the wall-normal and spanwise velocity fluctuations, the DSM predictions are closer to 
the DNS data than the other models. The DRM predicts velocity fluctuations that are 
lower than the DNS data in the streamwise direction, while the results in the wall-normal 
and the spanwise directions show the largest deviation of the models from the DNS re- 
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FIGURE 5. Reduced (deviatoric) turbulence intensities in streamwise Rxx, wall-normal Ryy, 
and spanwise Rzz directions. : DNS, : DSM (64,49,48), : DSM (128,97,96), 
 : DMM (64,49,48),  : DMM (128,97,96), : DRM (64,49,48), and : 
DRM (128,97,96). 

suits. The velocity fluctuations therefore seem to give a rather confusing message of the 
DRM behavior, while the turbulence intensities show a consistent behavior for all three 
intensities. 

The modeled shear stresses are shown in figure 6. It is a well-known problem that the 
DSM does not predict enough shear stress in the near-wall region (Baggett, Jimenez & 
Kravchenko 1997). As shown in the figure, the total modeled shear stress increases as 
the level of reconstruction is increased. However, the contribution from the DSM does 
not change much between the diffierent simulations; the peak value is approximately the 
same. The increase of modeled shear stress is therefore almost entirely due to the RSFS 
model. 

8. Discussion and conclusions 

The true LES approach is investigated in turbulent channel flow using commutative fil- 
ter functions in all three spatial directions. In the true LES approach, a grid-independent 
solution to the filtered governing equations is obtained. A computational code using 
an energy-conserving fourth-order finite-difference scheme is applied and fourth-order 
commutative filters are used. Simulations of turbulent channel flow were performed at 
Rsr = 395. The explicit filter width was kept fixed while the computational grid was 
refined, to obtain a grid-independent solution. The results using two different grid res- 
olutions show only minor differences, indicating that the LES solutions are converged. 
The explicit filtering also reduces the numerical errors that are associated with the high- 
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FIGURE 6. Modeled shear stress, T12, using different turbulence closure models for the 
computational grid (64,49,48). : DSM, : DMM, : DRM. 

wavenumber portion of the spectrum when using non-spectral methods. Therefore, ex- 
pUcit filtering in LES, using high-order commutative filters, results in a numerically-clean 
environment where turbulence closure models can be investigated in grid-independent 
LES solutions. 

The turbulence closure models investigated are the DSM, DMM and DRM. The models 
are compared to DNS data for mean velocity profiles, velocity fluctuations, and reduced 
turbulence intensities. The results show that since the turbulence closure models are 
traceless (the DSM) or partially traceless (the DMM and the DRM), special care is 
needed when comparing the turbulence quantities to DNS results. The reduced turbulence 
intensities represent the deviation from isotropy and show a consistent behavior of the 
models, while these conclusions caimot be drawn firom studying the velocity fluctuations. 

The poor agreement between the DNS results and the DSM shows the need for RSFS 
models when a smooth (in spectral space) explicit filter function is applied. In theory, 
the RSFS stresses can be exactly reconstructed by an inverse-filtering operation. How- 
ever, in a non-spectral method, the RSFS stresses cannot be exactly reconstructed, due 
to numerical errors. The results predicted by the models investigated show a distinct 
improvement in the predicted quantities, when compared to DNS results, as the level 
of reconstruction is increased. These improvements are probably due to the increase of 
modeled shear stress in the near-wall region. The DSM is known not to predict enough 
shear stress in the near-wall region, and as the level of reconstruction is increased so is the 
modeled shear stress. The increase is almost entirely due to the RSFS model, since the 
contribution from the DSM does not change much in the simulations. However, it should 
be noted that even if an exact reconstruction of the RSFS stresses can be obtained, the 
results will depend on the USFS model used. The LES results need to be compared to 
filtered DNS data, since the governing equations are filtered. The accuracy of using the 
DSM to capture the USFS stresses also needs to be determined. 
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Wall modeling for large-eddy simulation 
using an immersed boundary method 

By   F. Tessicini f, G. laccarino, M. Fatica, M. Wang AND R. Verzicco % 

1. Motivation and objectives 
Orthogonal, structured grids allow flow simulations in simple geometries with high ef- 

ficiency and accuracy. In contrast, complex and realistic flow problems have traditionally 
required the use of curvilinear or unstructured meshes, which require large computational 
costs and reduced accuracy due to limited grid smoothness and orthogonality. In recent 
years an alternative approach which combines the advantages of simple Cartesian grids 
with the ability to deal with complex geometries has been developed. In this technique, 
named the immersed boundary method (Fadlun et al. (1999)), the complex object is 
immersed in a regular grid and the body effect on the flow is accounted for by prescrib- 
ing an appropriate body force in the momentum equations in the first computational cell 
outside the immersed body. This is a de facto grid-free numerical method in the sense 
that the time-consuming construction of the smooth mesh fitted to the body is avoided. 

Flows in industrially relevant configurations are often characterized by high Rejmolds 
numbers. A Direct Numerical Simulation (DNS) which resolves all the time and length 
scales requires grid resolution and computational resources that will not be available in 
the near future. Turbulence models have to be used to make those simulations feasi- 
ble. The immersed boundary approach has been used successfully in combination with 
Large-Eddy Simulation (LES) and Reynolds Averaged Navier-Stokes (RANS) techniques 
(laccarino & Verzicco (2003)). Accurate LES of wall bounded flows, however, requires a 
near-wall resolution comparable to that for DNS, thus hmiting the use of LES to mod- 
erate Reynolds numbers. One way to overcome this difficulty is to replace the near-wall 
region with a wall model which provides the outer LES with approximate wall bound- 
ary conditions. In recent years wall models based on turbulent boundary-layer equations 
and their simphfied forms (Balaras, Benocci & Piomelli (1996); Cabot & Moin (2000); 
Wang & Moin (2002)) have been developed and applied successfully in a number of flow 
configurations. 

The objective of this work is to study the applicability of a simple near-wall model, 
based on the local equilibrium hypothesis, in the framework of immersed boundary 
method for LES and to analyze its effect on the flow dynamics. The selected test case is 
the flow past a 25 degree, asymmetric traifing edge of a model hydrofoil. The Reynolds 
number based on free-stream velocity Uoo and the hydrofoil chord C, is Rec = 2.15 x 10^. 
The simulation is performed over the rear 38% of the hydrofoil chord, and the Reynolds 
number based on the hydrofoil thickness is Re = 1.02 x 10^. The flow was investigated 
experimentally by Blake (1975) and numerically by Wang & Moin (2000), who re- 
ported that 200 CRAY C-90 CPU hours were needed to advance the simulation by one 
flow-through time for a fully resolved LES. 

t DMA, Universita di Roma La Sapienza, Via Eudossiana, 18, 00184, Roma, Italy. Also with 
INSEAN, Via di Vallerano 139, 00128, Roma, Italy. 

t DIMeG and CEMeC, Politecnico di Bari Via Re David, 200, 70125, Bari, Italy. 
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2. Numerical set-up and wall model 

The equations used for the present study axe the three-dimensional, incompressible, 
unsteady Navier-Stokes equations with an additional boundary body-force term f: 

^ = -p-'VP + V • {P[Vu + (Vu)^]} + f , (2.1) 

V-u = 0. (2.2) 

Here u denotes the filtered velocity, and P is the sum of the filtered pressure and the 
trace of the subgrid-scale stress tensor. The effective viscosity p is the sum of the subgrid- 
scale eddy viscosity and the molecular kinematic viscosity. The subgrid-scale turbulent 
viscosity is determined by a d5Tiamic procedure and does not require direct specification 
of any model constant (Germano et al.  (1991); Lilly  (1992)). 

The equations are solved by a second-order centered finite-difference solver. Details on 
the numerical methods and on the expression for f are given in Fadlun et al. (1999). 
Here it suffices to mention that if the time-discretized version of (2.1) is 

u"+i - u" = At(RHS + f) , (2.3) 

(with At the computational time step and RHS the sum of nonlinear, pressure, and 
viscous terms), to impose u"+^ = Vj,, the boundary velocity, the body force f must be, 

f = -RHS+   '' . (2.4) 

This forcing is active only in the flow region where we wish to mimic the solid body, and 
it is set to zero elsewhere. In general, the surface of the region where u"''"^ = vj does 
not coincide with a coordinate surface, therefore the value of f at the node closest to the 
surface but outside the solid body is Hnearly interpolated between the value yielding Vj, on 
the solid body and zero in the flow domain. This interpolation procedure is consistent with 
a centered second-order finite-difference approximation, and the overall accuracy of the 
scheme remains second-order. The linear interpolation, however, can be used only if the 
location of this point is inside the linear region of the boundary layer. In order to extend 
the appUcability of the immersed boundary method to higher Reynolds number flows, a 
two-layer wall modeling approach will be considered instead of the linear interpolation. 

Equations (2.1) and (2.2) are solved down to the second grid point firom the solid 
boundaries. Prom the second grid point to the wall a refined mesh is embedded, and 
simplified turbulent boundary-layer equations are solved. The boundary-layer equations 
have the following general form (Balaras, Benocci & PiomeUi (1996); Wang & Moin 
(2002)): 

d 
dXn 

: Fi,       with 

where n denotes the direction normal to the wall and i = 1,3 the wall parallel directions. 
In the present study only a simplified version of the above model, namely the equilibrium 
stress balance model obtained by setting Fi = 0 in (2.5), was used. The eddy viscosity 
i>t is obtained from a simple mixing length eddy viscosity model with near wall damping 
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wall 

FIGURE 1. Interpolation procedure: o , streamwise velocity node; o , vertical velocity node, n is 
normal to the wall from first external point B. U is the tangential velocity interpolated at point 
C, used as boundary condition for the wall model. 

(Cabot k Moin 2000; Wang 2002) 

— = Ky^{l■ 
V 

e-^)^ (2.6) 

where i/+ is the distance to the wall in wall units based on the the local instantaneous 
friction velocity, K = 0.4, and A = 19. The boundary conditions for the wall model are 
the LES velocities at the outer edge of the wall-layer and the no-shp condition at y = 0. 
Since in (2.6) the friction velocity Ur is required to determine 2/+ which, in turn, depends 
on the wall shear stress given by (2.5), an iterative procedure has been implemented to 
solve (2.5) and (2.6) simultaneously. It is worth mentioning that for a general geometry, 
an interpolation procedure is needed for the calculation of the tangential velocity in 
(2.5) since the wall normal does not cross any computational node. The choice of the 
interpolation points follows the approach used by Balaras (personal communication): all 
the first external grid nodes are identified, the wall normals are drawn through these 
points, and the interpolation node is placed on the same segments at twice the distance 
h (see figure 1). The choice of 2h is somewhat arbitrary but, as noted by Balaras, it allows 
the most compact scheme without involving points inside the body. The fluid velocity at 
the interpolation point is computed using the inverse distance formula based on the grid 
points surrounding the interpolation node. 

The computational cost of the wall model, including the interpolation procedure, is 
about 10% of the total computational cost. 

The equilibrium stress balance model implies the logarithmic law of the wall for in- 
stantaneous velocity at ?/+ » 1 and Unear velocity for 7/+ < 1. Figure 2 shows the 
velocity profiles given by the model when it is used in the low {Re = 300) and higher 
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FIGURE 2. Velocity profiles as a function of wall-normal distance, as predicted by (2.5) and 
(2.6) at two different Reynolds numbers. 

^^^Z^^ 

FIGURE 3. Flow past a hydrofoil trailing edge. The contours (-0.2 to 1.2 with increment 0.08) 
represent the instantaneous streamwise velocity. 

{Re = 3900) Reynolds number cases. In the former case the first interpolation node is 
located at j/+ = 5, while in the latter it is at y+ = 30. It can be observed that the 
linear interpolation usually adopted in immersed boundary procedures is automatically 
recovered when the first external node is located in the viscous sublayer of the turbulent 
boundary layer. In contrast, when the interpolating node is within the log layer, the wall 
model yields the appropriate velocity profile thus extending the range of applicability of 
the immersed boundary method in conjunction with LES to the high Reynolds-number 
regime. 
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FIGURE 4. Mean velocity magnitude at (from left to right) xi/H = -3.125, -2.125, -1.625, 
-0.625, 0. •, experiment (Blake 1975); , full LES (Wang & Moin 2000); , present 
calculation; , LES with wall model (Wang & Moin 2002). 

3. Preliminary results and discussion 

In the simulation with the wall model the computational domain is 0.25H x 41F x 
16.5H, where H denotes the hydrofoil thickness. The grid has 25 x 206 x 418 points, 
respectively, in the spanwise, cross-stream and streamwise directions. The grid distribu- 
tions of the Cartesian mesh in the cross-stream and streamwise directions are the same 
as that used by Wang & Moin (2002) for the straight part of the profile. A imiform mesh 
with 0.013^" spacing is used between the upper and lower sides of the hydrofoil in the 
cross-stream direction. The mesh is uniform in the spanwise direction and non-uniform 
in the other directions, with nodes clustered around the wall and near the traihng edge in 
the wake. The distance in wall units from the second oflf-wall grid point (where the wall 
model is required to match the local LES velocity) to the wall is in the straight portion of 
the hydrofoil about Ax^ = 120. Compared to the full LES performed by Wang & Moin 
(2000), this simulation has a spanwise domain width that is half of the original one. 

In figure 4 the mean velocity magnitude computed using the immersed-boundary tech- 
nique with wall modeling is compared with the experimental (Blake 1975) and full LES 
(Wang & Moin 2000) data. Result from the LES of Wang & Moin (2002) on a body-fitted 
mesh with the same equifibrium stress-balance model is also plotted for reference. The 
velocity magnitude, defined as U = (Uf + U^)i, is normalized by its value C/g at the 
boundary layer edge. The vertical coordinate is measured as the vertical distance to the 
upper surface. Although considerable discrepancies exist with the experimental and fuU 
LES results, compared to the simulation without wall model on the same grid (figure 5), 
the improvement is evident. 

The largest deviation between the present predictions and the full LES solution occurs 
at Xi/H = —1.625 where the second oflF-wall grid point, used as outer boundary for the 
wall model, is far from the wall. The location of the outer-boundary for the wall model 
(first off-wall LES grid point in Wang and Moin (2002) vs. second off-wall point in the 
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FIGURE 5. Mean velocity magnitude at (from left to right) xi/H = -3.125, -2.125, -1.625, 
-0.625, 0. , full LES (Wang & Moin 2000); , present LES with wall model; , 
present LES without wall model. 

§1^1    0 

-0.5 

FIGURE 6. Profiles of the normalized mean streamwise velocity in the wake, at (from left to 
right) xi/H = 0, 0.5, 1.0, 2.0, 4.0. , full LES (Wang & Moin 2000);  , present 
calculation; LES with wall model (Wang & Moin 2002). 

present work) constitutes a major difference between the present model implementation 
and that of Wang Sz Moin. This could be the cause for the observed discrepancies between 
the two wall model solutions, and a grid refinement study in the cross-stream direction 
is needed to test the sensitivity of the wall model to the outer boundary location. It is 
noted that the present simulation predicts the separation point near the trailing edge 



Wall modeling with immersed boundary method 187 

quite well but a strong deviation from the full LES is observed in the upper part of 
the trailing-edge station xi/H = 0, possibly due to the small spanwise dimension. As 
pointed out by Wang & Moin (2002), their spanwise domain size, at half the hydrofoil 
thickness, was too small. In the present simulation it is even smaller by another 50%. 
New simulations are underway in order to rectify the above deficiencies and to test the 
capabiUty of the method to compute the turbulent stresses. Finally, figure 6 depicts the 
wake profiles in terms of the mean streamwise velocity, which show reasonable agreement 
with the full LES and previous wall modehng results. 
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Towards LES wall models using optimization 
techniques 

By Jeremy A. Templeton, Meng Wang AND Parviz Moin 

1. Introduction 
Large-eddy simulations (LES) of high Reynolds number flows are difficult to perform 

due to the need to include a large number of grid points in the near wall region. While LES 
models the small scales of the flow and resolves the large, dynamically important scales, 
near the wall, eddies scale with the distance from the wall and move increasingly nearer 
to the wall as the Reynolds number increases. These eddies are djniamically important 
despite their small size. Unfortunately, the eddy viscosity sub-grid scale (SGS) models 
only make a small contribution to the total Reynolds stress. This makes these models 
invalid near the wall (Jimenez & Moser 2000), unless the LES grid is sufficiently refined 
to resolve the near-wall vortical structures. Therefore, the number of grid points for an 
LES scales as Re^ in an attached boundary layer (Baggett, Jimenez & Kravchenko 1997). 
This is only a slight improvement on the scaling for a full direct numerical simulation 
(DNS) of iJe^/". 

The technique of wall modeling was developed to reduce the Reynolds number scaling of 
LES resolution so that LES could be applied in practical situations. For recent reviews, 
see Cabot & Moin (1999) and Piomelli k, Balaras (2002). The approach has a long 
history dating back to atmospheric science and oceanographic applications. Limited by 
the computational power of the time, Deardorff (1970) was the first to implement a model 
for the wall layer in an LES of a channel flow at infinite Reynolds number. He implemented 
constraints on wall-parallel velocities in terms of the wall-normal second derivatives to 
ensure the LES satisfied the log-law in mean. The wall transpiration velocity was set to 
zero. The first "modern" wall model was developed by Schumann (1975). It is a modern 
wall model in the sense that the wall stresses are determined directly by an algebraic 
model. The wall stresses were found by assuming that they were in phase with the velocity 
at the first off wall grid point and that the deviation from their mean was proportional 
to the deviation of the velocity from its mean. Since the flow was in a channel, both the 
mean wall stresses and mean velocities were known. The transpiration velocity was set 
to zero. Many improvements to this basic model have been proposed and tested, see e.g. 
PiomeUi et al. (1989), Mason k Callen (1986), Grotzbach (1987), and Werner & Wengle 
(1991), although none of these attempts produced a wall model robust enough for use in 
most engineering flows. 

To address this robustness issue in wall modeling, several investigators used more 
elaborate near-wall flow models to compute the wall stresses (see e.g. Balaras et al. 
(1996) and Cabot & Moin (1999)). This type of approach divides the computational 
domain into two regions: one near the wall and one away from the wall. A simplified set of 
equations based on turbulent boundary-layer (TBL) approximations are solved on a near 
wall grid separate from the outer LES grid, subject to boundary conditions determined 
from the outer LES velocity together with the no-slip wall. The computed wall stress 
is then provided to the LES as a boundary condition. While this method does require 
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the solution of an extra set of equations, the simplifications made in these equations 
makes its cost much less than the evaluation of the LES equations. This method was 
tested in a plane channel, square duct, and rotating channel by Balaras et al. (1996) and 
in a plane channel and backward-facing step by Cabot k Moin (1999). More recently, 
Wang & Moin (2002) used a variant of this method to perform an LES of an airfoil 
trailing edge flow. The results are generally better than those of the algebraic models, 
since the TBL equations can account for more of the physics of the flow. However, there 
is insufficient evidence of robustness of this approach, particularly on coarse meshes and 
at high Reynolds numbers. 

The difficulty of formulating a robust wall model was highlighted by Cabot (1996). 
In that work, a backward facing step LES was performed using the "exact" time series 
of the wall stress from a resolved LES as the wall model. The results of this approach 
were not satisfactory and in fact not an improvement over the other types of wall models 
previously mentioned. This indicates that SGS and numerical errors play an important 
role in the coarse grid LES, which has not been accounted for by the previous wall 
models. To investigate this hypothesis and determine what information a wall model must 
provide to the LES, Nicoud et al. (2001) used optimal control techniques to compute the 
wall stresses in a channel LES at Rcr = 4000. A cost function was defined to be the 
difference between the plane-averaged LES streamwise and spanwise velocity fields and 
their known mean values (log-law in the streamwise direction and zero in the spanwise 
direction). Adjoint equations were used to determine the cost function derivatives, and 
iterations were performed at each time step to determine the best wall stress. Since the 
iterations were not performed over a large time window, this approach was sub-optimal. 
Linear stochastic estimation (LSE) was then used to determine a feedback law for the 
wall stresses based on their correlation with LES velocities obtained from the sub-optimal 
control algorithm. 

Many important lessons were learned from this work involving wall models based on 
optimal control theory. Unfortunately, this approach proves to be impractical due to 
the high computational cost required for the suboptimal control since it requires both 
the solution of adjoint equations and many iterations to achieve convergence in the wall 
stresses. Furthermore, the cost function is based on known target data, making the model 
non-predictive. Baggett et al. (2000) also demonstrated that the LSE models generated 
from such computations are too sensitive to the numerical parameters to construct a 
universal LSE coefficient database. The objective of the present work is to develop a 
low-cost, robust wall model to achieve the accuracy of the sub-optimal control technique 
without an a priori target solution. A cost function based on a Reynolds-averaged Navier 
Stokes (RANS) solution will be constructed in Section 2 to make the model predictive, 
and in Section 3, the problem will be formulated in an optimal shape design setting 
in an attempt to reduce the computational cost. Some test results and discussions are 
presented in Sections 4 and 5. 

2. Cost function 

In order to make the wall model predictive, an easy to evaluate cost function near the 
wall using quantities not known a priori must be defined. To this end, a RANS model is 
used to provide the target velocity. This is motivated by the recognition that the near- 
wall region of a high RejTiolds number boundary layer is more appropriately modeled by 
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RANS than by a coarse grid LES with filter length larger than the integral scale of the 
turbulence. 

In the present work, the RANS model is obtained from a simplified version of the TBL 
equation model used by Wang & Moin (2002): 

d i = l,3 (2.1) dm]      1 dp 
dy [' dy\      pdxi LES 

i^t (y) = Ki/y+(l - e-^"^/^)   ,    y+=yurlv. 

These equations model all Reynolds stresses through a damped mixing length eddy vis- 
cosity, and expUcitly account for the pressure gradient which is assumed constant across 
the wall layer and is imposed by the LES. To complete the model, a no slip condition is 
apphed at the wall and the outer boundary is set to be the LES velocity. The resulting 
velocity profile should be interpreted as the ensemble averaged velocity profile given the 
local LES state. It can therefore be expected that, on average, the resolved LES should 
match the RANS solution near the wall. Note that this model is chosen for simpHcity in 
this initial attempt, and there are Ukely better models for this application that will be 
explored in future work. 

In an overlapped region consisting of N LES grid points in the wall-normal direction, 
cost functions are devised to match the LES and RANS solutions on average. An attrac- 
tive method in a statistically stationary flow would be to use a running time average to 
provide the target velocities. However, if the control authority is restricted to the cur- 
rent time, this approach becomes impractical since the flow at the current time would 
contribute only a small fraction of the total cost function. This makes it difficult to de- 
termine the control since the cost function is insensitive to it. If the control is explicitly 
computed as a function of time, then adjoint equations have to be integrated backward 
in time to find a correct solution over a sufficiently large time window which contains 
enough statistical samples. 

An alternative is to use the current state as the statistical sample. Thus, the first cost 
function is defined to be the £2 difference between the LES and RANS states: 

.  N . 
J£2 =   /  53 ((^RANS.lls/r. - "LES.llvn)^ + (wRANS,3|y„ - WLES.slj/n)^] dS, (2.2) 

where S is the surface and j/„ are the locations of the n overlap points. In this way, a 
sufficient number of samples of the flow state are used to make a meaningful average. 
Also, the cost function is based only on quantities at the current time step, so no history 
information is required. This type of cost function is also compatible with the gradient 
evaluation methods used in this work (see Section 3). 

Other cost functions can also be formulated for this problem. A cost function based 
on the average deviation of the LES and RANS is: 

JA= i  1^ ((URANS,ll3/„ - ULES,l|y„) + (uRANS,3|j/„ " "LES.slj/n)) dS \    . (2.3) 

This cost function is similar to that used by Nicoud et al. (2001). However, as shown in 
Section 4, this cost function performs quite poorly. Analysis of its gradients indicates that 
they do not capture the sign information correctly in some regions (gradient computation 
will be discussed in the next section). In order to retain more information and move in 
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the direction of feedback control, a signed cost function has also been used: 

•^S =        Y] ((WRANS.lls/n - WLESalyn) + ("RANS,3|y„ - WLES,3|V„)) dS. (2.4) 

When this cost function is used, the control strategy is shifted to force the cost function 
to zero rather than minimizing it. It was thought that this approach might better take 
advantage of the method being used for gradient evaluation, but it only resulted in a 
moderate improvement (see Section 4) 

The choice of N in (2.2) - (2.4) should be made to include as many matching layers as 
possible while remaining in the region where the RANS model is a reasonable approxi- 
mation for the given local flow. Furthermore, the LES velocity too close to the wall may 
involve large errors (Cabot 1996) and thus is not suitable as a RANS boundary condition. 
In the calculations presented in this article, N has been chosen to be three. 

Two important points should now be noted. First, while all the cost functions here are 
based on matching RANS and LES velocities, other quantities could also be used. These 
could include matching vorticity or energy fluxes with suitable models. Second, it may 
not be possible or desirable to reduce the cost function to zero. Doing so could artificially 
reduce the turbulence fluctuations of the flow. Also, if an inexpensive scheme is required, 
it may not be possible to fully optimize the solution. Thus, the cost function must act 
as a suitable quantity for feedback regulation, rather than for minimization. 

3. Optimization using shape design techniques 
Optimal shape design consists of a set of techniques for optimizing a shape to achieve 

an engineering objective (e.g. Mohammad! k Pironneau 2001). Several approaches have 
been developed in this field that have had some success in reducing the computational 
expense of the optimization procedure. In an attempt to bring these techniques to bear, 
the wall modehng problem is formulated in this framework. 

In general, the formulation is to consider a partial differential equation A {U, g, a) = 0 
in a region Q, satisfying boundary conditions b {U, q,a) = 0 on dCl. The optimization is 
performed to determine 

mm {J {U, q,a):A {U, g, a) = 0 Vx G fi, 6 {U, g, a) = 0 Vx e m} (3.1) 

for some cost function J {U, q, a). In this formulation, U is the state, q the shape, and a 
are the control variables. The gradient of the cost function with respect to the control 
variables is then: 

dJ_dJ      dJ_dq      dJ_dU_dq 
da~ da^ dqda'^ dU dqda ^^'^^ 

The standard technique for solving this equation is to use an adjoint method interfaced 
with a gradient minimization technique. But, as previously noted, this can be expensive 
and present data storage difficulties in time-accurate computations. Since it is the last 
term in (3.2) that requires the adjoint evaluation, Mohammadi & Pironneau (2001) sug- 
gest the following assumption when the controls and the cost function share the same 
support: 

dJ_     dJ     dJdq 
da^da'^dqda ^^'^^ 

This assumption is called the method of incomplete sensitivities since the sensitivity to 
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the state gradient is ignored. The use of this method has been explored in this work since 
it has produced positive results in the optimization of aerodynamic shapes. For examples, 
see Mohammadi (1999), Mohammadi et al. (2000), and Mohammadi & Pironneau (2001), 
although these are all steady, two-dimensional applications. Since no rigorous proof on 
the appUcability of this technique exists and its usefulness is based on purely empirical 
studies, it was not known how well it would perform in a full LES. Furthermore, the 
present cost function is not defined exactly on the support of the control, although it is 
defined in a small neighborhood of the control. While these factors will produce errors, 
the gradient evaluation needs only accurately predict the sign of the gradient and capture 
to some degree the difference in magnitudes of the derivatives with respect to different 
control parameters. A goal of this work is to determine if the amount of information 
contained in this gradient is sufficient for appHcation to wall boundary conditions. 

In order to apply the incomplete sensitivity assumption, the control must be related 
to shape design parameters. B-splines spaced evenly along the surface (although not 
enough to form a complete basis) are used to parameterize deformations normal to the 
surface. The control parameters, Cj, are then the spline amplitudes. The gradient of the 
cost function with respect to these parameters can be computed using finite differences 
by perturbing each parameter by a small value, e, and then using (3.3) to evaluate the 
gradient based on the current state information. It is not necessary to recompute the 
actual geometry or grid because all the state variables of interest can be stored and 
matched to the new surface. The parameter e is chosen a priori by making it small 
enough such that the gradient values are independent of it. 

Once the cost function gradient is known, the new spline amplitudes can be computed 
by 

ar=af-pf, (3.4) 
where pis a, descent parameter set in advance and k is the iteration count. The new shape 
is computed by adding the surface perturbations to the previous shape. To relate this to 
the wall stresses, the RANS model is used to compute the correction to the equivalent 
slip velocity on the original surface: 

1J'w,i = /RANS.i iVnew) ,      i = 1, 3, (3.5) 

where / stands for the RANS model given by (2.1). This approach is inspired by a Taylor 
series expansion about the wall (Mohammadi & Pironneau 2001). In this way, it is not 
necessary to change the computational geometry of the LES. 

The total slip velocity is given by adding the correction u^ j to the old wall slip velocity. 
Corrected wall stresses can then be computed directly by definition 

where Axj is the local wall normal grid spacing. 
While this approach avoids the evaluation of a set of adjoint equations, iterations are 

still required to converge the solution. Additional function evaluations are also often used 
to determine an optimal choice for p at each iteration. In order to make the wall model 
practical, these costs must be avoided. Therefore, no iterations are performed at each 
time step. The cost function gradients are computed and used in a feedback manner to 
provide a correction. Every a^ is reset to zero at each time step. Also, p is taken to be a 
fixed parameter similar to the gain in a feedback controller. To make up for some of this 
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FIGURE 1. £2 cost function history. 

lost information, a predictor-corrector approach to the control algorithm is used. This is 
done by using (2.1) to compute a prediction of the wall stress before the optimization is 
used. It is expected that the prediction will account for the missing physics in the coarse 
grid LES while the optimization will correct for the numerical and SGS modeling errors. 
While this approach must be classified as sub-optimal, it is still reasonable to expect a 
cost function reduction if at each time step the LES velocity is forced in the direction of 
the reduced cost function. 

4. Results 
The application of this method to the traiUng edge flow simulated previously by Wang 

& Moin (2000, 2002) has produced mixed results. The first goal is to justify the incomplete 
sensitivities assumption. The £.2 cost function history is shown in Figure 1. While the 
average value is reduced approximately 15% from the inital value, this is not completely 
out of the range of the cost function fluctuations. It is therefore inconclusive regarding the 
validity of the assumption. As shown in Figure 2, the predicted wall stress matches the 
full LES wall stress quite well in some regions for the £2 and signed cost functions, but 
performs poorly in other regions. The separation point is predicted reasonably accurately 
for both these cost functions. As previously indicated, the average cost function performed 
more poorly. Figure 3 contains a comparison between the C2 cost function results and 
the predictor alone. The new results are much better in the region near the skin friction 
peak, although they produce a less smooth skin friction profile, and rather large errors 
remain in part of the adverse pressure gradient region. Overall, the model demonstrates 
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FIGURE 2. Time averaged skin friction over the airfoil surface: , C2 cost function;  
average cost function;  , signed cost function; , full LES of Wang & Moin (2000). 
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FIGURE 3. Time averaged skin friction over the airfoil surface: , £2 cost function;  , 
predictor only; , full LES of Wang & Moin (2000); , TBL model of Wang & Moin 
(2002). 
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FIGURE 4. Mean velocity magnitude profiles at several trailing edge stations: , £2 cost 
function; , full LES of Wang & Moin (2000). Locations are those indicated in Figure 2. 
T.E. is the trailing edge point. 
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FIGURE 5. Streamwise component of turbulence intensities at several trailing edge stations: 
 , £2 cost function; , full LES of Wang & Moin (2000). Locations are those indicated 
in Figure 2. T.E. is the trailing edge point. 

some improvement over the simple wall model used as a predictor, but is less accurate 
than the full TBL equation model used in Wang & Moin (2002). 

Comparison of the velocities between the full LES and wall modeled LES (based on the 
£2 cost function, which produced the best results) are quite good. As shown in Figures 
4 and 5, the coarse grid LES is able to match the resolved LES very closely. The main 
(moderate) discrepancy occurs in the turbulent intensities near the wall. This is not 
unreasonable since these quantities were not included in the cost function and it may 
in fact not be possible to capture these regions accurately because the LES grid does 
not resolve the intensity peak. When compared to the results of Wang & Moin (2002) 
using only the predictor, the results are found to be comparable and in fact are worse for 
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the two cost functions not shown. Therefore, it is difficult to draw definitive conclusions 
about the effect of the gradient based optimization procedure on the velocity field. 

5. Channel flow analysis 
In order to evaluate the proposed wall model in a more controlled environment, the 

algorithm has been implemented in the plane channel LES of Nicoud et al. (2001). This 
is a simpler and well known case, so the model can be more readily analyzed. It was 
immediately noticed that, unlike the trailing edge case, the cost function gradients could 
not be made independent of the small parameter e used in the finite-diflference compu- 
tation. The gradients monotonically decreased with e until they reached a value of zero. 
This result indicated that the incomplete sensitivity approach did not accurately capture 
the gradients in the channel since Nicoud et al. (2001) observed non-zero gradients in the 
sub-optimally controlled channel. The following analysis is used to explain these results, 
as well as the difficulties encountered with this method in the trailing edge geometry. 

Consider a cost function of form 

J{a) = f f{u{a))dS. (5.1) 

Since in the cmrrent framework, the shape and shape deformations are defined in two 
dimensions, the surface can be parameterized by taking the y coordinates as a function 
of X, i.e. y = g{x). Then the cost function becomes 

J{a)= f f{u{x;a)Wl + {g'{x)ydx. (5.2) 

Consider a perturbation to this surface parameterized by eh{x). In the current context, 
h{x) would correspond to the spfine and e to the small change in the control parameter. 
The new cost function is computed by considering its sensitivity to geometry only, so 

rl 
J{a + e)= /  f{u{x; a)Wl + {g'{x) + eh'{x))Hx. (5.3) 

Jo 

By using a Taylor series expansion, one obtains to 0(e): 

Vl + (5'(^) + eft'(x))2 « v/1 + {9'{x)y + e(l + {g'{x)f)-^l-'g'{x)h'{x). (5.4) 

When the gradient is computed by taking {J{a + e) — J{a))/e, the resulting term is 

1^ « y' f{u{x; a))(l + ig'{x)f)-'/^g'ix)h'ix)dx. (5.5) 

This expression explains the observed cost function gradients. First, it has been demon- 
strated in both the trailing edge and channel flows that in regions where the surface is 
flat, the gradients are zero. This is clear since in these regions, g'{x) = 0. A similar 
observation occurs in areas where the surface is a straight Hne. This is because g'{x) is 
constant and, in this case, h{x) is symmetric, meaning that whenever h'{x) > 0, there is 
a corresponding xi such that h'{xi) — -h'{x). Thus, unless f{u{x;a)) has a very large 
change between x and xi, since g'{x)h'{x) + g'{xi)h'{xi) = 0 the gradient will be very 
small. 

Finally, it has been observed that in regions of curvature away from the direction of 
perturbation and for a positive definite f{u{x;a)) (such as the £2 cost function), the 
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gradient is always positive. This can be seen by examining the product g'{x)h'{x). In 
these regions, g'{x) is always negative and increases monotonically in magnitude. By 
the symmetry of h{x), the regions where h'{x) is positive correspond to g'{x) having a 
smaller magnitude, and the regions where h'{x) is negative correspond to g'{x) having 
a greater magnitude. Thus, the positive contribution is greater in magnitude than the 
negative contribution, and hence the gradient is positive since f{u{x;a)) is positive and 
varies less than the curvature. 

The sensitivity computed by this method is then almost exclusively dependent on 
the curvature of the function whose information is contained in g'{x). It is difficult to 
determine how this information could be useful in changing the state u such that the given 
cost function is minimized in a rigorous and well defined manner. For any cost function 
defined as above, the incomplete sensitivity method will act in a way directly related 
to the curvature of the surface. If a correlation exists between reducing this curvature 
and reducing the cost function, the method may produce reasonable results. However, 
there is no reason to believe that, in general, reducing surface curvature will be helpful 
in wall modeling. In fact, as experience in the channel has demonstrated, a region of no 
curvature still requires control to obtain an accurate solution. Therefore, it is likely that 
an alternative method must be found for the general application of a wall model. 

6. Conclusions and futiu-e work 

Wall modeling using control theory is a promising new approach for developing robust 
wall models which account for not only the unresolved flow physics but also numerical 
and SGS modeling errors. In the present work, a methodology has been proposed to 
overcome the deficiencies of the model of Nicoud et al. (2001) and make the control- 
based wall model predictive and practical in terms of computational expense. Two critical 
components, namely the use of RANS velocity profiles as the near-wall LES target in the 
cost function and the incomplete sensitivity method for gradient evaluation have been 
examined and tested in a turbulent trailing edge flow. 

Based on the results, it is clear that the assumption of incomplete sensitivities is not 
appropriate for LES wall models with the type of cost function considered in this work. 
This is at least partly due to the cost function measuring the LES state in the flow and not 
at the wall. A cost function that is more sensitive to the geometry could be better suited, 
but it is unclear how to formulate such a cost function for a wall model. Furthermore, 
there is evidence suggesting that in applications similar to this, the gradient calculated 
with incomplete sensitivities may have not only incorrect magnitude but also incorrect 
sign (Marsden et al. 2002). Clearly, a more accurate means is needed to compute the 
gradient. 

The use of a cost function matching a RANS profile near the wall may however prove 
useful in LES wall modeling. It has a solid physical basis, although the RANS model used 
here is rather rudimentary. More robust RANS models, such the k-uj model are being 
considered. In addition to choosing an appropriate RANS model, the choice of matching 
quantities is also an important factor in the performance of the model. Matching LES 
and RANS velocities may prove not to be the best quantity to minimize for optimal per- 
formance of the model. Cost functions based on vorticity or energy could better account 
for djoiamics that are more important to the large scales in the LES. An investigation 
of these cost functions and implementation of a RANS model is underway in a channel 
flow. 
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Optimal aeroacoustic shape design using 
approximation modeling 

By Alison L. Marsden, Meng Wang AND Petros Koumoutsakos 

1. Introduction 
Reduction of noise generated by turbulent flow past a trailing edge continues to pose a 

challenge in many aeronautical and naval applications. Aeroacoustics problems related to 
such applications necessitate the use of large-eddy simulation (LES) or direct numerical 
simulation in order to capture a wide range of turbulence scales which are the source 
of broadband noise. Much previous work has focused on development of accurate com- 
putational methods for the prediction of trailing-edge noise. For instance, aeroacoustic 
calculations of the flow over a model airfoil trailing edge using LES and aeroacoustic 
theory have been presented by Wang & Moin (2000) and were shown to agree well with 
experiments. To make the simulations more cost-effiective, Wang & Moin (2002) success- 
fully employed wall models in the traiUng-edge flow LES, resulting in a drastic reduction 
in computational cost with minimal degradation of the flow solutions. With the recent 
progress in simulation capabilities, the focus can now move from noise prediction to noise 
control. The goal of the present work is to apply shape optimization and control theory to 
the trailing-edge flow previously studied, in order to minimize aerodynamic noise. In this 
work approximation modeling techniques are applied for shape optimization, resulting in 
significant noise reduction in several cases. 

1.1. Choice of optimization method 

One general distinction among optimization techniques is between gradient-based meth- 
ods and non-gradient-based methods. The choice of method for a particular problem 
depends on factors such as the cost of evaluating the function, the level of noise in the 
function, and the complexity of implementation. Gradient-based methods generally in- 
clude adjoint solutions and finite-diflFerence methods. Non-gradient-based methods may 
include pattern-search methods, approximation models, response-surface methods and 
evolutionary algorithms. In LES-based aeroacoustic shape design, cost-function evalua- 
tions are computationally expensive, and hence the efliciency of the optimization routine 
is crucial. Therefore, a key consideration is cost minimization when choosing an opti- 
mization method. 

One of the difficulties in gradient-based optimization methods is the calculation of the 
gradient of the cost function with respect to the control parameters. The most widely-used 
gradient method is to solve an adjoint equation in addition to the flow equations, as has 
been successfully demonstrated by Jameson et al. (1998) and Pironneau (1984). However, 
adjoint methods are difficult to implement for time-accurate calculations, and can present 
data storage issues. Additionally, adjoint solvers are not portable from one flow solver to 
another. Because of these factors, the method of "incomplete sensitivities" was initially 
chosen for the gradient calculation. This method, suggested by Mohammadi & Pironneau 
(2001), ignores the effects of geometric changes on the flow field when computing the 
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gradient of a surface-based cost function. This makes it simple to use, and far more cost- 
effective than solving the full adjoint problem. In fact, only a small additional cost to the 
flow computation is needed for every iteration. Examples demonstrating the method are 
given by Mohammeidi k. Pironneau (2001). 

Initially, appUcation of the method of incomplete sensitivities produced seemingly 
promising results, as presented by Marsden, Wang & Mohammadi (2001). However, on 
further study the method was found to break down for several important cases. A sys- 
tematic evaluation of the incomplete-sensitivity method was carried out by comparisons 
with the "exact" gradient in the case of a single control parameter. It was found that 
the exact and incomplete gradients do not agree with each other; furthermore, they do 
not always have the same sign, as shown by Marsden et al. (2002). This finding shows 
that neglecting the state contribution to the gradient is not vaHd for the problem of 
trailing-edge noise. We thus conclude that the incomplete sensitivities approach is not 
adequate for the present apphcation. 

In choosing an alternate optimization method, we are concerned with identifying a 
method that has robust convergence properties and yet is computationally feasible. To 
this end, the method of approximation modeUng was chosen for exploration. Approxima- 
tion modeling was developed for use in engineering optimization problems which require 
the use of expensive numerical codes to obtain cost function values. Gradient information 
for these problems is often difficult or impossible to obtain. In addition, many optimiza- 
tion problems have associated data sets which have error, or cost functions which are 
noisy. For all of these reasons, there has recently been considerable interest in using 
approximation modeling for optimization with large engineering simulations. 

1.2. Introduction to approximation modeling 

Approximation modeling is a family of non-gradient-based methods which rely on model, 
or surrogate, functions to approximate the actual function. Optimization is performed, 
not on the expensive actual function but on the model, which is cheap to evaluate. 
The use of approximation modeling for expensive functions has been demonstrated by 
Booker et al. (1999), Serafini (1998), Chung & Alonso (2002) and others. These surrogates 
can be polynomials, in which case the models are called "response surface" models, or 
interpolating functions such as splines or more advanced functions. 

As an illustration of this method, let us assume we wish to find a minimum of the 
function y = fix) within an allowable domain Xmin <x< Xmax- The basic procedure 
using an approximation-modeling technique is as follows. First, we begin with a set of 
initial data points x = [xi,a;2, ...,a;„] where the function values are known. We then 
fit a surrogate function through these points to approximate the actual function. We 
express the surrogate function as y = /(x). Because the surrogate function is inexpensive 
to evaluate, its minimum (within the allowable range of x) can be easily found using 
standard optimization methods. When the minimum is found, the actual function is 
evaluated at this point, the surrogate fit is updated, and the process continues iteratively 
until convergence to a minimum function value. 

Approximation-modeling methods have several possible variations. One is the choice 
of surrogate function. Others include the choice of initial data distribution, and the use 
of merit functions to ensure a good distribution of the data. In this work, results are 
presented using approximation-modeHng methodology on the model problem of Marsden 
et al. (2001). Details of the optimization procedure are discussed in section 3. In section 
4, results are presented for a one-parameter case, for which we compare the performance 
of several surrogate functions. In section 5 we present results of a calculation using two 
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C 
FIGURE 1. Model airfoil used in shape optimization. The right half of the upper surface is 

allowed to deform. 

parameters, and discuss the effects of the initial data set on the final solution. Extension 
of the method to several parameters is also discussed. Using approximation-modeling 
methods, a significant reduction in cost function is demonstrated for several one- and 
two-parameter caset The method is shown to be robust and computationally affordable. 
In addition, the method has uncovered a new airfoil shape which gives a greater reduction 
in noise than previously achieved. 

2. Formulation and cost-function definition 
We begin by formulating the general optimization problem. Given a partial differential 

equation A{V, q, a) = 0 defined on the domain Q. with control variables a, state variable 
U and design parameters q, we wish to minimize a given cost function J(U,q,a). The 
control problem can be stated as 

min {J(U, q, a) : A(U, q, a) = 0 Vx 6 fi,  6(U, q, a) = 0 Vx G 90} (2.1) 

where b(U, q, a) is the boundary condition of the PDE. In our problem, the state equa- 
tions are the Navier-Stokes equations and the cost function is the acoustic source. 

The ultimate goal of this work is to optimize an airfoil shape with fully-turbulent flow 
at the trailing edge. Because of the cost of LES calculations, the optimization method 
is first implemented and validated on an unsteady laminar model problem, which is the 
subject of the present work. The airfoil geometry for the model problem is shown in 
figure 1 and is a shortened version of the airfoil used in experiments of Blake (1975). The 
airfoil chord is 10 times its thickness, and the right half of the upper surface is allowed 
to deform. The flow is from left to right and results presented in this work are at a chord 
Reynolds number of Re = 10,000. Previously, in Marsden et al. (2001), results were also 
presented for Re = 2,000, and it was shown that the cost function was easily reduced to 
zero. The focus of the present work is therefore on the higher Reynolds number. 

Before discussion of the optimization method, we outline the derivation of the cost 
function for the model problem. For unsteady laminar flow past an airfoil at low Mach 
number, the acoustic wavelength associated with the vortex shedding is typically long 
relative to the airfoil chord. Noise generation from an acoustically-compact surface can 
be expressed as follows, using Curie's extension to the Lighthill theory (Curie 1955), 

p « ^-^m - M|x|), A = I / njp,j{y,t)cfy (2.2) 
47r |x| ct Js 

where p is the dimensionless acoustic density at far field position x, Pij = pSij — Ty is 
the compressive stress tensor, rij is the direction cosine of the outward normal to the 
airfoil surface S, M is the fi:ee-stream Mach number, and y is the source-field position 
vector. All the variables have been made dimensionless, with airfoil chord C as the length 
scale, free stream velocity Uoo as velocity scale, and C/Uoo as the time scale. The density 
and pressure are normalized by their ambient values. Note that (2.2) implies the three- 
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dimensional form of Lighthill's theory, which is used here to compute the noise radiated 
from unit span of a two-dimensional airfoil. The radiation is of dipole type, caused by 
the fluctuating lift and drag forces. 

The mean acoustic intensity can be obtained from (2.2), as 

M^    — ; -^ 

where the overbar denotes time averaging, and 6 = tan~^(x2/a:i). To minimize the total 
radiated power, we need to minimize the integrated quantity 

Hence, the cost function is defined as 

•^ = (^ ^ "iPii(y. t)<Py)   + (I ^ "iP2i(y, t)6?y^ (2.5) 

which corresponds exactly to the acoustic source function. 

3. Optimization procedure 

In this section, we outline the steps in the algorithm used to optimize the airfoil shape. 
Our aim is to find the minimum of the cost function defined by (2.5). The cost function, 
J, depends on control parameters corresponding to the surface deformation. To start 
the optimization process, the cost function is evaluated for several initial points in the 
parameter space. The subsequent steps are as follows: 

1. Fit a surrogate function through the set of known data points 
2. Estimate the function minimum using the surrogate function 
3. Evaluate the true function value at the estimated minimum 
4. Check for convergence 
5. Add new data point to list of known points and go back to 1. 

Iterations continue in this way until the parameters have converged to give a final airfoil 
shape. 

The control parameters are defined as follows. Each parameter corresponds to a de- 
formation point on the airfoil surface which must be within the deformation region. The 
value of each parameter is defined as the displacement of this point relative to the orig- 
inal airfoil shape, in the direction normal to the surface. A positive parameter value 
corresponds to displacement in the outward normal direction, and a negative value cor- 
responds to the inward normal direction. A spline connects all the deformation points to 
the trailing-edge point and the left side of the deformation region to give a continuous 
airfoil surface. Both ends of the spline are fixed. While the surface must be continuous 
and smooth on the left side, the trailing-edge angle is free to change. 

For a given set of parameter values, there is a unique corresponding airfoil shape. To 
calculate the cost-function value for a given shape, a mesh is generated and the flow 
simulation is performed until the solution is statistically converged. Because the flow has 
unsteady vortex shedding, the cost function is oscillatory. In the optimization procedure, 
the mean cost function J (cf. (2.5)) is used, and is obtained by integrating in time until 
convergence. An example of the oscillatory cost function, and the time-averaged value is 
shown in figure 2. The case shown corresponds to the origind airfoil shape. 
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FIGURE 2. Cost function (gray) and mean cost function (solid black) vs. time. Oscillatory cost 
function is time-averaged until the mean converges. The case shown is for the original airfoil 
shape. 

4. One-parameter results 

Results using a single parameter, a, are presented for several surrogate function choices. 
With a polynomial siurogate function, at least three initial data points are needed. In all 
one parameter cases presented here, the allowable range of a is —0.05 < a < 0.02. The 
thickness of the airfoil is 0.1, and the chord length is unity. 

Figure 3 shows the evolution of the response surface using a third-order polynomial as 
the surrogate function. The upper left plot shows the three initial points, and following 
plots show three iterations on the value of a corresponding to the minimum. With each 
iteration, the surrogate function evolves to include all known cumulative data. Conver- 
gence is reached when the function minimum does not change from one iteration to the 
next. A least-squares fit of the polynomial is used, so the polynomial does not go ex- 
actly through the data points. A total of six function evaluations is required to reach 
convergence, and a 19% reduction in cost function is achieved. 

As expected, an improvement in the function fit is obtained by using a fourth order 
polynomial, as shown in figure 4. The optimization procedure is the same as for the third 
order case. A more significant reduction in cost function, 26%, is achieved. However, 
there is a trade-off in computational cost, since the higher-order polynomial picks up 
more detail in the function but requires eight function evaluations. 

Figure 5 shows results for a single parameter case using a cubic spline as the surrogate 
function. The optimum airfoil shape corresponding to the minimum cost-function value 
achieved with the spline fit is shown in figure 6. It is qualitatively similar to the shapes 
obtained using the polynomial surrogates and these are not shown. Because the surrogate 
spline is piecewise and fits exactly through the data points, it captures more detail in the 
function than either polynomial case for the present problem. Similar to the fourth-order 
polynomial case, the cost fiinction reduction is 27% with 12 function evaluations. 

Using only one parameter, we have demonstrated that the approximation modeling 
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FIGURE 3. Third-order polynomial response surface for one-parameter case. Each plot shows 
mean cost function J vs. shape parameter a where a = 0 corresponds to the original shape. Line 
is surrogate function fit, dots are known function values. 

FIGURE 4. Fourth-order polynomial response surface for one parameter case. Each plot shows 
mean cost function J vs. shape parameter a where a = 0 corresponds to the original shape. Line 
is surrogate function fit, dots are known function values. 

method is robust and converges to a minimum with a modest number of function eval- 
uations. A significant reduction in cost function has been achieved and the results for 
all surrogate functions were qualitatively similar. Comparatively, the spline surrogate 
function resulted in the greatest cost-function reduction. The cases using polynomials 
emphasize that it is undesirable to use low-order polynomials as global models, since 
they are unable to capture details of the function such as multiple local minima. How- 
ever, there is also danger in increasing the order of the polynomial, due to oscillations 
between the data points known as the "Runge" phenomenon. To avoid these problems, 
one may wish to use a "trust region" method, in which the polynomial model is restricted 
to a region near the minimum, where the function is approximately quadratic. 
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FIGURE 5. One-parameter case with cubic spline as surrogate function. Each plot shows mean 
cost function J vs. shape parameter a, where a = 0 corresponds to the original shape. Line is 
surrogate function fit, dots are known function values. 

FIGURE 6. Initial (black) and final (gray) airfoil shapes using one parameter with spline as 
surrogate function. 

5. Two parameters 
Although the results using one parameter are very promising, the true test is whether 

the computational cost remains reasonable when the method is extended to more param- 
eters. In this section, results are presented using two parameters, a and b, for which a 
biharmonic spline was the surrogate function. The deformation points for parameters a 
and 6 are evenly spaced in the deformation region of the airfoil surface. A spline is chosen 
as the surrogate function, based on the results for the one-parameter test case, and the 
optimization procedure is the same as in the one-parameter case. We also study the effect 
of choice of initial data on the final solution. Three sets of initial data were used, which 
we call A, B and C. For all cases, the parameters are limited by -0.05 <a< 0.02 and 
-0.035 < b < 0.02. The lower limit corresponds to a straight line connecting the left 
edge of the deformation region and the trailing edge. 

The left side of figure 7 shows the initial data points used for the two-parameter case 
with data set A. Contours of the mean cost function value, J, are shown with parameters 
a and b plotted on the axes. In this case, the initial data points are not chosen to lie 
in a particular pattern. The final surrogate-function fit is shown on the right side of 
figure 7. The cluster of points near the minimum shows the convergence of the solution, 
and the surface has one minimum valley. The cost-function reduction for this case was 
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-0.02 

FIGURE 7. Case A: Contours of mean cost function, J, vs. parameters a and b for two-parameter 
case with biharmonic spline as surrogate. Data points marked with x. Initial data points are 
shown on left, final converged solution is shown on right. 

FIGURE 8. Initial (black) and final (gray) airfoil shapes using two parameters with biharmonic 
spline as surrogate function, data set A. 

29% which is a slight improvement over the best one-parameter case. As expected, the 
two-parameter case requires more function evaluations; 17 evaluations were required for 
case A. Figure 8 shows the initial and final airfoil shapes for this case. 

Contours of the initial surrogate-function fit using data set B are shown on the left of 
figure 9. In this case, the initial data were chosen in a small star pattern centered around 
the origin. Like case A, the final surrogate fit, shown in the right of figure 9, has one 
minimum valley. However, it gives a solution qualitatively very difiFerent from case A, 
suggesting that the actual function has at least two local minima. The optimum airfoil 
shape for case B is shown in figure 10. In contrast to case A (Fig. 8), the tredling-edge 
angle in case B has increased instead of decreased. Although the magnitude of the shape 
deformation is relatively small, the reduction in cost function is significant at 52%. This 
solution was not previously expected. 

Cases A and B show that the initial data set can dramatically impact the final solution, 
causing the solutions to converge to two distinct local minima. In both cases a viable 
airfoil shape was found which resulted in a significant cost-function reduction. However, 
ideally, we desire the solution to converge to the global minimum, and to give the same 
result independent of the initial data choice. It is, of course, impossible to guarantee 
convergence to the global minimum, and the cost-function reduction is always limited 
by the parameter space. However, there are ways to increase our chances of converging 
to a global minimum and improve robustness. For instance, by choosing an initial data 
set which covers the entire allowable range of a and b, the solution is not biased toward 
a minimum in a particular area. To demonstrate this, initial data set C is chosen as a 
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FIGURE 9. Case B: Contours of mean cost function, J, vs. parameters a and b for two-parameter 
case with biharmonic spline as surrogate. Data points marked with x. Initial data points are 
shown on left, final converged solution is shown on right. 

FIGURE 10. Initial (black) and final (gray) airfoil shapes using two parameters with 
biharmonic spline as surrogate function, data set B. 

large star pattern centered around the origin and shown by the surrogate fit in the left 
of figure 11. The final surrogate fit is shown on the right of figure 11 and this solution 
gives a cost function reduction of 45%. We notice that the final fit of case C captures 
two local minima. The final airfoil shape is qualitatively similar to that of case B but the 
minimum is located in a slightly different position, suggesting that solutions B and C 
may not be well converged. The total number of function evaluations has been reduced 
dramatically, from 23 evaluations required for case B to 9 evaluations required in case C. 

By introducing a second parameter to the problem, it has been demonstrated that 
resvdts improve dramatically and the cost of the optimization problem remains manage- 
able. A second parameter also gave the flexibility to find new solutions, as in cases B and 
C, which are not admissible in the one-parameter space. The importance of choosing an 
initial data set which spans the parameter space has also been confirmed. It can increase 
the chance of finding the global minimum and reduce the number of iterations. 

The physical reasons for the reduction in cost function can be explained by the vortex- 
shedding characteristics and associated unsteady forcing on the airfoil. Figure 12 com- 
pares vortex-shedding characteristics for the original shape and the final shapes of cases 
A and C in terms of the instantaneous streamwise velocity. We see that the vortex shed- 
ding strength has decreased for both cases A and C compared to the original. As a result, 
the amplitude of lift fluctuations, which dominate the acoustic dipole source, has been 
reduced by 12% for case A and 24% for case C. The larger decrease in lift amplitude 
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FIGURE 11. Case C: Contours of mean cost function, J, vs. parameters a and 6 for two-parameter 
case with biharmonic spline as surrogate. Data points marked with x. Initial data points are 
shown on left, final converged solution is shown on right. 
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FIGURE 12. Instantaneous streamwise velocity contours for original (top), case C (middle) and 
case A (lower). Contour levels are the same for all cases, between —0.4 < u < 1.53 

for case C explains why the reduction in cost function is greater for cases B and C than 
for case A. The shedding frequencies for all cases are similar. The optimal shape found 
in case A also shows an increase in mean lift of 40% over the original value, whereas in 
case C a slight 3% decrease in mean lift is observed. In practical application it is often 
necessary to ensure that the mean lift is not reduced by the shape optimization. To this 
end, afirodynamic properties will need to be included using multi-objective optimization 
methods, which may slightly compromise the large reduction in cost function found in 
case C. 

To extend the method to several parameters, it will be desirable to use a surrogate 
function which is easy to implement and has good behavior in high dimensions. Many 
model functions exhibit undesirable behavior such as excessive "wiggles" between data 
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points when extended to high order. An alternative is the use of kriging functions, a type 
of interpolating model first introduced in the geostatistics community by South African 
geologist D. G. Krige. Kriging is based on statistics and random-function theory, and 
is easy to implement in an arbitrary number of dimensions. The underlying idea is to 
use a weighted linear combination of values at the sampled data locations to interpolate 
the function. The best linear estimator is then found by minimizing the error of the 
estimation. A detailed derivation of the method can be found in Isaaks k Srivastava 
(1989) and Guinta (2002). Kriging has since been adopted by the optimization community 
and is now used in many engineering problems. 

6. Discussion and future work 

A summary of results using several surrogate functions with one and two parameters is 
presented in table 1. The table clearly shows an improved reduction in cost function with 
the addition of a second shape parameter. Generally, the cases with greater cost function 
reduction also require more function evaluations, although a judicious selection of the 
initial data points can speed up convergence dramatically. It is advantageous to chose 
initial data which span the entire parameter space. Results using approximation modeling 
are a nearly two-fold improvement over the results of previous methods presented in 
Marsden et al. (2001). 

In future work, the use of kriging functions with several optimization parameters will be 
explored. Extension to multiple parameters will determine the scalability of this method 
in terms of the number of function evaluations. It will also determine whether further 
reductions in cost function are possible, and if the trade-oflF in computational cost is 
significant. Additionally, there are several variations on the method used here which 
could improve convergence and robustness. As shown by Booker et al. (1999) and Serafini 
(1998), the use of a poUing step in the algorithm rigorously guarantees convergence to a 
local minimum. The use of merit functions, as discussed in Torczon &: Trosset (1998), to 
ensure good data distribution will be explored. With this method, a weighting function 
is employed to determine whether the data points are well distributed throughout the 
domain. If the data points are clustered together, additional points may be evaluated to 
improve the smrrogate function fit in areas lacking data. To speed up the optimization 
process, it may be desirable to evaluate the minimum point in parallel with several 
other points which improve the function fit. These variations of the method will explore 
the possible cost trade-off between fast convergence to a local minimum and increased 
chance of reaching a global minimum. The use of multi-objective optimization to include 
aerodynamic properties (lift and drag) and thickness will also be required in the design 
of practical trailing-edge shapes. 

Once confidence has been gained in the specifics of the approximation-modeling method, 
optimization of the turbulent traifing-edge flow will be performed. In the turbulent case, 
the airfoil is not acoustically compact for all the frequencies of interest, and the cost func- 
tion may need to be reconsidered. Alternatively, an approximation of the cost function 
can be used so long as it is well correlated with the true acoustic source function. The 
choice of cost function will be influenced to some degree by whether the objective is to 
reduce noise in a band of frequencies of primary interest, or to reduce the total radiated 
power. 



surrogate function parameters Jorig *f optimum % reduc 

S*"** order polynomial 1 0.166 0.1348 19% 
4*'' order polynomial 1 0.166 0.1223 26% 

cubic spline 1 0.166 0.1215 27% 
biharmonic spline, set A 2 0.166 0.1174 29% 
biharmonic spline, set B 2 0.166 0.0794 52% 
biharmonic spline, set C 2 0.166 0.0912 45% 

212 A. L. Marsden, M. Wang & P. Koumoutsakos 

% reduction function evaluations 

4 
8 
12 
17 
23 
9 

TABLE 1. Summary of results for several surrogate functions choices with one and two param- 
eters. Cost function reduction and number of function evaluations needed for convergence are 
compared for all cases. 
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Towards sail-shape optimization of a modern 
clipper ship 

By   T. Doyle f, M. Gerritsen % AND G. laccarino 

1. Objective and motivation 

Sail-shape optimization is challenging because of the complex coupling between the 
aerodynamic forces produced by a sailboat's rig and the hydrodynamic forces produced 
by its hull and underwater appendages: see Marchaj (2000). Yacht designers generally 
assume a steady-state sailing condition, setting rig forces in equilibrium with hull forces to 
estimate performance: this assumption forms the basis of widely-used Velocity Prediction 
Programs or VPPs. Accvirate numerical modeling of the complete boat (sails, hulls and 
appendages) is extremely expensive from a computational point of view, and not practical 
if many different configurations and flow conditions have to be investigated. In our sail- 
optimization research, we therefore rely on simplified models to handle the hull forces 
and the interaction between hull and sail forces. We use CFD to accurately compute the 
flow past the sails and the aerodynamic forces on the rig. 

The typical goal of sail-shape optimization is to produce a configuration that optimizes 
the velocity made good, VMG (VMG refers to how fast a boat is traveling towards a 
certain target) for a given apparent wind speed and direction (the apparent wind is the 
vector sum of the boat velocity and the wind velocity). In many respects, a sail resembles 
an airplane wing and similarly it generates a lifting force, L, perpendicular to the free 
stream flow, and a drag force, D, in the direction of the free stream flow. At different 
apparent wind angles the optimal force configuration wiU be different. The essential 
requirement of a sail is to generate a large driving force C^ along the centerhne of the 
boat. Except when sailing dead down wind, this is not possible without producing a 
heeling force Cy perpendicular to the centerline at the same time. The heeling force must 
be balanced by the the hull and a side force produced by the underwater appendages. 
The stabiHty of the hull and the efficiency of the underwater appendages therefore limit 
the driving power that can be extracted from the wind. The relation between hft and 
drag, and driving and heeling force is determined by the sail sheeting angle relative to the 
centerhne of the boat. In upwind conditions a sail is set at small sheeting angles meaning 
that most of the lift produced is directed perpendicular to the centerline, producing 
a large heeUng force and a small driving force. The optimization criterion is therefore 
generally to maximize the ratio of driving force to heeling force. When a boat turns 
away from the wind the sheets are eased, which results in the lift contributing more to 
the driving force and less to the heehng force. Because the hull now needs to balance a 
smaller heeling force, more lift can be tolerated. When saiUng on a beam reach (apparent 
wind angle of 90 degrees) most of the force produced by the rig acts along the centerline 
and thus a high Uft coefficient is needed. On downwind comrses, the only criterion for sail 
efficiency is maximum drag of the rig. 

At present most sail-shape optimization is performed using parametric studies where 

t Mech. Eng. Dept, Stanford University 
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design variables such as camber, draft and twist are adjusted in a trial-and-error fashion 
to maximize a certain performance measure. The performance of a given sail configura- 
tion can be evaluated using full-scale testing, wind tunnel testing or numerical simulation. 
Full-scale testing is accurate, but expensive and time-consuming. Wind-tunnel measure- 
ments are also expensive and, in addition, it is difficult to scale real-world performance to 
model size. Computational Fluid Dynamics (CFD) has the potential to evaluate the per- 
formance of a given sail shape accurately. CFD calculations also provide a more detailed 
description of the flow field than either wind-tunnel testing and full-scale testing, and can 
therefore contribute to a better understanding of the optimization problem. CFD tech- 
niques have been successfully applied to shape-optimization problems in the aerospace 
industry for a number of years: see Reuther et al. (1996), Mohammadi & Pironneau (2001) 
and Kim et al. (2002). A major advantage of using CFD to evaluate the forces produced 
by a sail is that CFD solvers can be easily integrated with optimization procedures to 
automatically search for optimized sail shapes. 

The goal of our current work is to explore the possibility of using automated opti- 
mization algorithms coupled to CFD for sail shape optimization: see Shankaran et al. 
(2002)and Doyle et al. (2002). There are two major categories of shape-optimization tech- 
niques; adjoint and iterative methods. Adjoint methods calculate the optimal shape via 
the solution of an adjoint problem obtained from the governing equations describing the 
fluid flow. This is effective because the cost of an adjoint solution is tjrpically equivalent 
to that of the original problem and, most importantly, independent of the number of 
design variables (Kim et al. (2002)). The adjoint method has become a popular choice 
for design problems involving inviscid fluid flow, and has been successfully used for the 
aerodynamic design of aircraft configurations (Reuther et al. (1996)). The major diffi- 
culty in using this approach is the definition of the appropriate adjoint equations for 
viscous flows. 

In this work we explore the use of iterative methods. We have chosen two approaches: a 
classical-gradient based cost-function minimization algorithm and an evolutionary strat- 
egy (ES). Both have been successfully applied to shape-optimization problems at the 
Center for Turbulence Research at Stanford. In the first approach, a cost function char- 
acteristic of the performance of the sail is minimized with respect to one or more control 
parameters. The iterative procedure requires the calculation of the derivatives of the cost 
function with respect to each of the control parameters at every iteration step. The second 
optimization approach uses evolutionary algorithms (EAs). EAs are biologically inspired 
optimization algorithms, imitating the process of natural evolution. EAs do not require 
gradient evaluations, but use a set of solutions (population) to find the optimal designs. 
The population-based search allows paraUelization, and may avoid premature conver- 
gence to local minima. However, the population normally must be large, thus requiring 
many flow calculations. 

Coupling optimization algorithms to CFD calculations requires the integration of var- 
ious subsystems, such as the grid generation tool, the flow solver, and the optimization 
algorithm. Initially, we consider a simplified two-dimensional model to facilitate the de- 
velopment of the optimization procedure. We design the procedure so that it can be 
directly extended to the three-dimensional case. In addition, it is possible that the two- 
dimensional model will be able to guide the three-dimensional optimization. Once both 
models have been implemented we will compare the 2D optimization results to the 3D 
results to evaluate the need for the more expensive 3D calculations. 
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FIGURE 1. Initial geometry. 

2. Optimization Approach 

2.1. The problem 

Because of the complexities involved in developing a general optimization method for 
sail shapes we start with a relatively simple apphcation: we optimize the yard, camber 
and sheeting angles of the rig of a modern chpper ship, the Maltese Falcon (figure 1), 
for upwind performance in moderate winds. The boat has three masts constructed of 
yards with circular-arc cross-section. The Maltese Falcon will be 87 meters in overall 
length, with a mast height of 53 meters off the water and a maximum yard length of 22 
meters. The rig is based on an original design by W. Proells, which was further devel- 
oped at Hamburg University in the early 1960's (Wagner (1976)) and is currently being 
developed by designers from Gerard Dijkstra & Partners and Doyle Sailmakers (Dijkstra 
(2002)). Wind-timnel data are available, and eventually real-world measurements will be 
produced. This will allow a direct assessment of the numerical code. 

Prom a modehng point of view this rig is attractive because the flying shape of the 
sails will be very close to the shape of the yards. This is due to the construction of 
the rig, which consists of yards with sails stretched between them. Although the sails 
will slightly deflect in reahty, it is beUeved that the deformation will not significantly 
influence the forces on the rig. In addition, the spanwise (vertical) variation of the sail 
cross section is very hmited, and wind-tunnel tests conducted with a model of the rig 
showed streamhnes (visualized using smoke) that were mainly two-dimensional except 
near the top and bottom of the rig. 

2.2. Evolutionary strategies and gradient-based shape optimization 

The general objective is the minimization of a properly-constructed cost function, J. The 
function is characteristic of the performance, and depends on a set of control variables, 6i. 
Two optimization algorithms are being developed: a classical gradient-based optimization 
algorithm and an Evolutionary Strategy. 

2.2.1. Gradient-based optimization 

The gradient-based optimization procedure requires the evaluation of the derivatives 
of the cost function with respect to the control parameters in each iteration step. A 
finite-difference formula is used to calculate the derivatives as: 
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(2.1) 
d0i AOi 

These derivatives determine the direction of improvement. For the following iteration, 
a step is taken in this direction and the procedure is repeated until convergence (Mo- 
hammadi k Pironneau (2001)): 

C" = ^?''-7^ (2.2) 

The weighting parameter 7 is used to weight the gradient information and changes 
with cost function and control variables. 

It is important to note that during each iteration the number of flow calculations needed 
is equal to 1 + iV where N is the number of control variables. Present simulations include 
6 control variables and an entire iteration only take a few minutes; three-dimensional 
simulations, or an increase in the number of control parameters, will make the current 
procedure computationally expensive. 

In our studies, we determined an appropriate 7 by trial and error. A comprehensive 
sensitivity study will be performed in the future. 

2.2.2. Optimization using evolutionary strategies 

An evolutionary algorithm tries to mimic natural selection to determine the optimal 
shape. At each step random mutations (changes) to the control variables are attempted 
and only those solutions that are better than their predecessors are selected in a method 
that resembles the survival-of-the-fittest natural process. Again a cost function represent- 
ing performance is defined to compare one solution to another. Our initial implementation 
is based on a very simple evolutionary strategy called a One + One ES (Sbalzarini et al. 
(2000)). In this scheme an initial solution is calculated Jparent', then each control variable 
is perturbed (using a random Gaussian distribution with standard deviation a), and a 
new solution JchUd is evaluated. The new solution is compared with the old solution, and 
if Jchiid < Jparent the child becomes the new parent for the next iteration. The standard 
deviation is adjusted using Rechenberg's 1/5 rule: every N * L iterations (where N is 
again the number of control variables and L is a constant) the standard deviation is 
increased (decreased) if the success rate is higher (lower) than 1/5. As the iterations pro- 
ceed and the optimal solution is approached, the standard deviation continues to drop. In 
this work, we use L = 10. Again, further analysis is necessary to determine the optimal 
choice. 

2.2.3. Sail-shape optimization 

When applied to sail-shape optimization the control variables are the parameters that 
define the sail geometry and configuration with respect to the boat. In our case the 
relevant control parameters are the camber of the yards and the sheeting angle. Initially 
we will apply the optimization method to a 2D model of a horizontal cross-section of the 
rig (taken at mid-mast). 

In this study we are interested in optimizing the upwind performance of the Maltese 
Falcon in moderate winds. As mentioned earUer, defining the cost function is a difficult 
task in upwind conditions. Ideally the cost function would be the VMG predicted with 
the use of a VPP, to take into account the hull/sail interaction. At present we do not 
have access to hull-performance data, so in order to develop our procedure we consider 



Sail optimization 219 

Heel(Gy) 

Apparent 

Wind  : 
Angle 

CHi 

FIGURE 2. Simplified two-dimensional model and definition of the main geometric and flow 
parameters. 

simplified cost functions. Possible simplified cost functions axe driving force, ratio of 
driving force to heeling force, lift produced or ratio of lift to drag. 

Om: simplified model has nine control parameters: the three sheeting angles {6i, i = 
1,2,3), the three cambers {Cii, i = 1,2,3), and the three chord lengths {CHi, i = 1,2,3) 
as shown in Figure 2. The total force on the rig can be decomposed into fift (Cj) and 
drag (Crf) or alternatively heeling force (Cy) and driving force (Ci). The other variables 
in our two-dimensional model are the apparent wind direction and velocity. Initially we 
consider the chords to be defined by the chord lengths approximately half way up the 
mast taken from the profile of the original design, but eventually the chord lengths may 
also be optimized. Becavise the chord lengths vary in the span-wise direction the spacing 
between sections at different heights also changes. To date the effect of the spacing (the 
distance between the 2D sections) has not been investigated but is beUeved to be an 
important parameter, and will be the subject of further study. 

2.2.4. Flow solution and grid generation 

The flow past the sails is calculated using FLUENT 6.0. We use FLUENT's incom- 
pressible Reynolds Averaged Navier-Stokes (RANS) solver on non-conformal unstruc- 
tured grids. In general, unstructured grids (as opposed to structured grids) are more 
flexible in terms of being able to handle complex and dynanMC geometry. Because of the 
high Reynolds number of the sail flows (of the order of one miUion), turbulence modeling 
is required. The turbulence model used in the present calculations is the Spalart-Allmaras 
turbulence model, which is sufficiently accurate for upwind and close-reaching conditions, 
and also computationally efficient (ColUe et al. (2001)). More-sophisticated turbulence 
models must be used for larger angles of incidence, because of flow separation. 

In order to couple FLUENT with our optimization procedure it is necessary to auto- 
mate the solution process. The automation is accomplished using FLUENT's scripting 
capability. A central program serves as the interface between the flow solution and the 
optimization algorithms. The flow-solution interface takes as input the sheeting angles, 
cambers and chord lengths of each of the sections, together with a description of where 
each section is placed relative to the center of each mast. A grid is automatically created 
from the input geometry and then the flow solution is calculated. The entire process takes 
around 1 minute to produce a solution on a computer with an Athlon 1.2 GHz processor 



220 T. Doyle M. Ge rritsen & G. laccarino 

Gtometry DtOnilion Optimization 
ImplementatjoD 

(Evolutionary Strategies 
orgradienl-based 

optimization) 
Optimizatiaii Parameters 

i 1 

GrMGeneration 
(Gambit) 

Flow Solution 
Interface 

' ' 
Flow Solatioii 
(HUHl t) 

FIGURE 3. Solution Procedure 

FIGURE 4. Semi-automatic grid generation process steps 

using a relatively coarse grid of around 7500 elements. Figure 3 shows a system diagram 
of the automated solution procedure. 

The most challenging aspect of automating the flow solution procedure is the robust 
and efiicient generation of grids to discretize the domain of interest. Here, robust refers 
to the ability to successfully generate meshes for any possible value of the control pa- 
rameters. The mesh generation is efficient if it clusters grid points in areas where large 
gradients of flow variables are expected (such as in the boundary layers) so that a minimal 
number of grid elements are required to obtain accurate predictions. 

The grid generation process starts with defining the three sectional shapes. Once 
the sections have been defined the region immediately surrounding the sail is clustered 
densely with grid points in order to properly resolve the boundary layer. Because the 
gradients are smaller in the stream wise direction than the wall normal direction, we use 
quadrilateral elements with large aspect ratio. The Spalart-Allmaras turbulence model 
requires the distance between the first grid point away from the wall to be placed at 
a non-dimensional distance known as j/+ on the order of 1. After meshing the region 
immediately adjacent to the sail the remaining domain is discretized using triangular 
elements. The use of non-conformal grids allows a mismatch between the grid points on 
the boundary of the inner and outer regions. Fluent uses interpolation to communicate 
the flow variables from the inner to outer regions. 

Triangular elements are used because the algorithm used by Fluent's grid generator 
Gambit to produce triangular elements is robust, and can handle the varying geometry 
created by adjusting the camber and sheeting angle of the sections. Quadrilateral ele- 
ments require fewer elements to discretize the same volume but the current algorithm 
available in Gambit is not rehable in handHng this geometry. We extended the far field 
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FIGURE 5. Sheeting angle optimization. Top: pressure contours corresponding to Ji (max Cx)- 
Middle: pressure contours corresponding to J2 (max Cx/Cy). Bottom: surface pressure distri- 
butions;  Ji J2. (a) 30 degrees, (b) 60 degrees and (c) 90 degrees. 

region to roughly 20 chord lengths in all directions, and discretized it with quadrilateral 
elements. The entire process is shown in figure 4. 

3. Results 
Initial tests were performed on isolated curculax arc cross sections to verify our niuner- 

ical solution method and to gain a better understanding of the aerodynamic properties 
of such foils. The results were compared to classical theoretical studies. In this section 
we will focus on two optimization studies. 

3.1. Sheeting-angle optimization 

The first step in developing an automated sail-shape optimization procedure is to ensure 
that, for a given apparent wind angle, the sails are set in the optimal configuration. This 
is straightforward for a single section. Once lift and drag are determined as functions of 
the angle of attack, the sheeting angle can be set to produce an incidence that optimizes 
the performance for the given apparent wind direction. With three interacting sections, 
however, the flow field is dependent on all three sheeting angles and it is not possible to 
set the optimal sheeting angles a priori. 

Initially, we consider two simple cost functions Ji (max Cx) and J2 (max Cx/Cy): Ji 
and J2 are reasonable choices in upwind and downwind conditions respectively. Opti- 
mization runs are performed for both cost functions for apparent wind angles ranging 
from 30 to 90 degrees. Both optimization strategies were used and lead to identical re- 
sults with comparable runtime. We present results for apparent wind angles of 30, 60 and 
80 degrees in table 1 and figure 5. Table 1 displays the driving force and heeling force 
coefiicients for each apparent wind angle for both cost functions. The optimal sheeting 
angles axe also given. Figure 5 shows plots of static pressure around the sail as well as 
the pressiure distribution on each section. 

For all apparent wind angles tested, the cost function J2 results in more open (larger 
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Cost 
Function 

Force Coefficient 
Driving (C^)  Healing (Cy) 

Sheeting Angle 
Aft (^i)  Mid {02) Fore (63) 

Ji(30) 0.9304 1.9038 -6.5 -19.3 -31.6 

J2(30) 0.7988 1.4754 -16.0 -26.6 -36.1 

Ji(60) 1.4943 1.0116 -42.6 -49.9 -55.8 

J2(60) 1.1327 0.6888 -52.0 -57.3 -60.9 

Ji(90) 1.6193 0.3893 -68.4 -70.9 -73.1 

J2(90) 1.2571 0.2499 -77.2 -78.3 -79.6 

TABLE 1. Table 1: Force coefficients and sheeting angles for the optimal sail configuration (the 
number in parentheses corresponds to the apparent wind angle). 

FIGURE 6. Telltales, imagined to be on the leading edge of the aft sai,l are shown to lift for 
the optimal condition predicted using the cost function Ji, indicating an over-trimmed sail. 
They stream back for the configuration corresponding to the J2 optimum, indicating a prop- 
erly-trimmed sail. 

angle) sheeting arrangements with a more even pressure coefficient distribution along the 
length of the sail cross sections. It is interesting to note that if telltales (wool tufts) are 
imagined to be placed on the leading edge of the sails as shown in Figure 6, cost function 
Ji results in an over-trimmed sail with the leeward telltale lifting, while cost function J2 
results in a well trimmed sail with both telltales streaming back. 

3.2. Sheeting angle and camber optimization 

Initial camber-optimization runs have been performed to investigate the influence of 
section camber on rig performance. All runs started with sections of 12% camber and 
the optimal sheeting angles presented in the previous section. In these runs six control 
parameters are considered: the sheeting angles and the section camber. A summary of 
the results is presented in table 2. Results are presented only for maximizing the driving 
force, as problems with convergence of the CFD code prevented conclusive results for 
optimizing the ratio of driving force to heeUng force from being obtained, ratio. 

Streamlines are shown in figure 7 for the optimal configurations calculated for max- 
imum driving force. The cambers selected to optimize the driving force are seen to be 
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FIGURE 7. Streamlines for maximum driving force for three apparent wind angles: (a) 30 
degrees, (b) 60 degrees and (c) 90 degrees. 

Cost Force Coefficient Sheeting Angle Chamber 
Function Driving (C^)  Healing (Cy)  Aft (Oi) Mid (6I2)  Fore (63)  Aft (Ci)  Mid (C2)  Fore (C3) 

Ji(30) 1.14 2.35 -0.5        -15.3        -33.5 14.2 16.8 

Ji(60) 1.96 1.29 -42.0        -48.6        -58.8 19.4 18.7 

Ji(90) 2.39 0.57 -68.2 -71.9        -75.5 30.9 24.4 

TABLE 2. Table 2: Force coefficients, sheeting angles and cambers for the optimal sail 
configuration (the number in parenthesis corresponds to the apparent wind angle). 

22.8 

26.8 

21.0 

greater than the original 12% sections in all cases. For apparent wind angles of 60 degrees 
and 80 degrees maximizing the driving force can be considered a reasonable cost function 
but for an apparent wind angle of 30 degrees the heeling force needs to be accounted for. 
The results for maximizing driving force at 30 degrees are presented as a reference with 
which to compare the results found in the previous subsection for optimizing the driving 
force at 30 degrees with only the sheeting angles as control parameters. It is interesting 
that the optimal sheeting angles are essentially the same as the ones presented before 
even if the cambers are consistently higher than 12%. Finally, it is interesting to mention 
that the increase in the performance (as measured by the cost function Ji) ranges from 
18% to 32%. 

4. Discussion and future work 
A CFD-based optimization procedure for sail configuration has been developed and 

applied to two-dimensional sections of a three-mast chpper ship, the Maltese Falcon. 
Optimization runs were conducted using both the gradient-based optimization tech- 

nique and a scheme based on evolutionary strategies. Both methods converge to the same 
solution in about the same amount of time, but further studies are required to optimize 
their performance. The major burden in the gradient-based methods is the calculation 
of the derivative of the cost functions with respect to the parameters. It is possible that 
an approximate evaluation of the gradients would be sufficient to drive the optimization 
process (Mohammadi & Pironneau (2001)). 
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The value of the parameter 7 greatly influences the convergence rate of the gradient- 
based algorithm. The value we used in this work was found by trial and error. A more 
thorough sensitivity analysis is required. Within the One + One ES the selection of the 
initial standard deviation and the constant L should also be investigated. In addition, 
the One + One ES is the simplest possible ES and there are other strategies that use 
larger sets of populations to arrive at the optimal configuration. 

In this paper we presented the design of our optimization method, and the development 
of the basic optimization tools. We are currently working on: 

• Further validation of the various components of the two-dimensional optimization 
strategy; 

• Development of more realistic cost functions that account for hull forces (and the 
global force balance) using experimental correlations; 

• Refinement of the CFD model to reflect more accurately the aerodynamic charac- 
teristics of the rig (three-dimensional effects). 
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An experimental investigation of high aspect-ratio 
rectangular szdls 

By A. Crook, M. Gerritsen f AND N. N. Mansour 

1. Problem statement and relevance of proposed research 

The flow around a sail is sensitive to external conditions such as the boat heel, boat 
speed and atmospheric conditions. The flow may also be Reynolds-number dependent, 
with typical Reynolds numbers in the range of 1-10 milhon. Aeroelastic effects of the 
sail can be important especially in downwind sailing. The performance of the sail is 
highly dependent on the sail trim. Designing a sail is in many senses more complex than 
an aircraft wing of high aspect ratio where the ambient conditions are known and are 
less dynamic. A Velocity Prediction Program (VPP) is used to take into account the 
performance of the yacht when designing a sail. The VPP solves a set of equations that 
govern the motion of the yacht. However modelling the aerodynamics of the yacht remains 
a large problem: see Jackson (1996). Sail performance characteristics usually come from 
CFD for upwind sails, whereas for downwind sails wind tunnel tests are the preferred 
method due to the high computational cost of downwind CFD simulations. 

At present, VPPs use semi-empirical data to calculate the forces on the hull and sails. 
An experimental database of sail properties and characteristics would allow the validation 
of Computational Fluid Dynamics (CFD) codes and their implementation in the VPP. 

The fluid dynamics of sails is also poorly understood, although the previous experi- 
ments discussed in this brief provide a base from which our knowledge can be further 
enhanced. The foremost reason for investigating two-dimensional sails is that the flow 
around three-dimensional sails is highly dependent upon the sail geometry and sailing 
conditions. For upwind sailing, the sail performance is highly sensitive to sail trim. A 
three-dimensional model sail is very difficult to trim, and the trim required would change 
with the varying flow angles and boat heel and direction. A three-dimensional sail ex- 
periment also requires that the freestream flow direction change with increasing distance 
from the foot of the sail. This is necessary to simulate the change in effective wind angle 
that the sail experiences as it travels through the Earth's atmospheric boundary layer. 

Team New Zealand have made use of a twisted-flow tunnel at The University of Auck- 
land in New Zealand (Flay (1996)) for downwind testing of 1/10 scale three-dimensional 
sail-hull configurations, and this has proved to be very useful in refining existing designs. 
The flow is twisted using a set of turning vanes, but the twist has to be changed for any 
change in the boat's speed or heading. For the reasons mentioned, upwind testing of the 
sail is infeasible. 

An experimental investigation of two-dimensional, high-aspect-ratio sails using sail 
sections representative of that used on modern yachts will therefore provide a generic 
database that will have a large impact on the saihng industry in terms of providing a 
database for CFD validation and also enhancing the sail designer's physical understand- 
ing of the complex fluid dynamics. 

t Stanford Yacht Research, Stanford University 
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1.1. Sail flow characteristics and the current state of the art 

The current state of the art in sail design is different for upwind and downwind sails. For 
the upwind conditions the camber of the sail and the angle of incidence of the apparent 
wind to the sail are small, resulting in largely attached flow. A leading-edge separation 
bubble may be present, especially in the presence of a mast. Wind tunnel testing by racing 
teams is rare due to the problem of trimming at model scale. Upwind sail performance is 
highly sensitive to trim because of the small angles of incidence involved, meaning that 
small changes affect the performance significantly. Upwind sail flow analysis is generally 
performed using panel methods, and sometimes Euler codes. The design starts as a series 
of two-dimensional sections that vary with the height of the sail, and that are then blended 
together to form a three-dimensional sail. The three-dimensional sail is then optimized 
further by coupling 3D panel methods, some of which can implement twisted onset flow, 
to a finite-element structural-analysis program to try to predict the flying shape. 

Physical understanding of the flow around generic sail sections at representative Rey- 
nolds numbers is Mmited. An enhanced understanding of the flow physics around sail 
sections is required as a first step to understanding the more complex flow around a 
three-dimensional upwind sail. 

Three-dimensional upwind sails may have separated flow at the head of the sail whilst 
the flow remains attached elsewhere as a result of the twisted onset flow. This greatly 
influences the sail design and trim. To reduce separation near the head, the sail is usually 
twisted also. Generally, strong tip vortices are shed off the head and the foot of the sail. 
As a result, the induced drag is large, and may contribute as much as 15% of the total 
boat drag (including hull, rigging and wave drag). Heeling of the boat also significantly 
affects the performance of the sails. It is also important to understand the sensitivity 
of the two-dimensional flow to Reynolds number, wind direction, camber and the effects 
of the mast and its orientation with respect to the sail. Such parameters will affect the 
transition behaviour of the flow, the size of the leading edge separation bubble if any, and 
the location of the trailing-edge separation. A correlation of these flow features with the 
corresponding sail pressure distribution, Uft and drag will be invaluable in understanding 
how to better design sails to provide the greatest amount of forward thrust without 
exceeding a given rolling moment (Wood and Tan (1978)). 

In reaching (i.e. partial-downwind conditions), the angle of incidence is larger. The 
flow on the main sail and gennaker or spinnaker is complex due to the presence of large 
scale separation for higher incident wind angles. If the flow is- separated at the leading 
edge it is important to know how large the bubble is and also for what conditions the flow 
reattaches. At higher angles of incidence, the flow is Hkely to be unsteady. This unsteady 
behaviour affects the dynamic behaviour of the sail. Flow simulation requires the use of 
viscous solvers and turbulence models. Because of their expense and Umited expertise in 
the sailing industry, wind tunnel testing is the preferred method of testing. However, the 
same limitations of many upwind experiments such as low aspect ratio and piu-ely force 
and moment data are also seen for the downwind experiments. For the downwind case, 
it is therefore important to provide flow topology and force/pressure data on sails with 
realistic camber and high aspect ratio for a range of wind angles and Reynolds numbers. 

There have been two seminal series of experiments that have attempted to address 
some of the fundamental questions regarding 2D sail flows, with and without masts, 
carried out by Milgram (1971), Milgram (1978) and Wilkinson (1984), Wilkinson (1989) 
and Wilkinson (1990). 

Milgram (1971) investigated highly-cambered (camber ratio (defined as the ratio of 
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maximum camber to chord) greater than 10) thin airfoils (without masts) with the NACA 
65 (Abbott and von Doenhoff (1959), p.386) and a = 0.8 (Abbott and von Doenhoff 
(1959), p.402) mean lines. The experiments were conducted in a water tunnel at three 
diflFerent Reynolds numbers of 6, 9 and 12 x 10^. These high Reynolds numbers were 
achieved through the use of water as the working fluid and by the use of relatively 
large-chord sections. The relatively small dimensions of the water tunnel meant that the 
aspect ratio of the airfoils was low, being equal to approximately 2.2. For highly-cambered 
sections, a low aspect ratio may cause spanwise three-dimensionality in the separating 
flow, although this was not addressed in Milgram's report. 

Data for the highly-cambered sections is in the form of lift, drag and pitching-moment 
coefficients for a range of angles of attack. The experimental setup uses dynamometers 
to measure the forces and moment, with one side of the airfoil clamped and the other 
side pinned. A consequence of this arrangement is that the airfoil twists under load, with 
two degrees of twist reported for angles of attack greater than ten degrees. 

For the range of camber ratios investigated for the NACA 65 and a = 0.8 mean line, 
the aerodynamic characteristics are similar and do not vary greatly over the limited 
Reynolds number range in which the tests were conducted. A typical CL-OC plot shows 
a hnear increase in CL up to 4 degrees angle of incidence, followed by a small drop in 
CL and then a recovery in CL up to approximately 20 degrees. The maximum value of 
CL increases with camber ratio for a given thickness distribution as one would expect 
and ranges between approximately 2 and 2.6. A typical plot of Co versus CL shows an 
almost hnear decrease in CD with CL until a plateau is reached where CD is a minimum 
(approximately 0.06) and fairly constant with CL until the airfoil stalls and the drag 
rises sharply. With increasing camber ratio, the sharp increase in drag at the end of the 
plateau is proceeded by a reduction in CL for increasing CD. The size of this reversal 
increases with increasing camber. The pitching-moment coefficient. Cm, defined at the 
quarter-chord point, is always negative because the center of pressure is significantly aft 
of the quarter-chord point, and becomes more negative with increasing camber ratio. The 
slope of the Cm — ce through zero angle of incidence is negative, followed by a minimum 
at around 4 degrees, and then a positive slope before another change in slope just before 
stall. 

These characteristics are different fi:om those of conventional, airfoils with low camber 
and moderate thidcness, the data for which can be found in Abbott and von Doenhoff 
(1959). Thin airfoil theory predicts pre-stall Hft versus angle of incidence fairly well for 
these sections. For highly cambered, thin sections, the CL is always less than predicted, 
with the slope of the curve greater than 27r/radian for angles of attack less than the 
theoretical ideal angle of incidence (defined as the angle of incidence at which the forward 
stagnation point just lies on the leading edge). The slope is less than 27r/radian for angles 
of attack greater than the ideal angle of incidence (figure 1). 

Milgram (1978) tested one mean fine (NACA a = 0.8) for two different camber ratios 
(0.12 and 0.15) with circular and eUiptic-shaped masts of different diameters. The data 
are again limited to lift and drag coefficients, although the longitudinal location of the 
center of pressure is included as a function of CL- The tests were carried out in the same 
water tunnel as used Milgram (1971), but without the turbulence screens, which resulted 
in measured values of CD for the sections without a mast being 10% higher than in the 
earher tests. 

The addition of a circular mast with a diameter to chord ratio (d/c) of 0.15, does 
not significantly change the CD-CL behaviour for Cii=0.15, and extends the CL range 
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FIGURE 1. Comparison of Ct versus a for NACA 65 mean line with C7i?=0.12 as predicted by 
thin airfoil theory and measured experimentally (Milgram (1971)). 

of the (7i?=0.12 section before the onset of the sharp drag rise. The difference in Co 
between the two diflFerent camber ratio sections is a slowly increasing function of Cx, for 
the circular mast (d/c=0.15). However the addition of an elliptic mast (d/c=0.17, where 
d in this case is the square root of the mast cross-section area), causes the CD-CL curve 
to be shifted to the right for the lower camber ratio meaning that the Ci?=0.12 section 
has a lower CD over the whole range in CL and the difference in CD between the two 
increases rapidly with increasing CL- 

The behaviour of CD versus CL is a smooth function of d/c over the Reynolds number 
range investigated (0.5 - 1.5 x 10®), except for the two largest diameter elliptical masts 
tested (d/c=0.31 and 0.36). For these two masts, CL/CD is much larger than would be 
expected by extrapolating the data from lower values of d/c. This indicates that the large 
masts are causing a different flow structure to occur with larger regions of separation. The 
use of trip devices on the elliptical mast with d/c=0.31 partly confirms this idea because 
the drag is reduced with their addition, presumably because of a delayed separation from 
the mast. For d/c=0.36, the effects of adding the trip devices upon the CD-CL plot are 
opposite for the two different Reynolds numbers tested. The data is largely insensitive 
to Reynolds number over the range examined, except for the d/c=0.36 elliptical mast 
without trip devices. 

Milgram concludes that a common range of mast-sail geometries for a broader range 
of camber ratio still need to be investigated. Also since the value of d/c is typically large 
near the head of sails, further study of sections at high CL for large values of d/c is 
required. The addition of a mast to the sail raises the friction and form drag to the same 
order of magnitude as the induced drag of the sail, whereas without the mast the friction 
and form drag would be small by comparison. 

Wilkinson (1984) took Milgram's experiments with the mast attached one step further, 
and measured pressure distributions and velocity profiles for NACA a = 0.8 and 63 mean 
lines with a circular mast attached. Tests with the NACA 63 mean line investigated the 
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effect of moving the point of maximum camber forward. Wilkinson conducted the tests 
in the 7' x 5' tunnel at Southampton University, England at Reynolds up to 1.6 x 10^. 
As with Milgram's tests, a low-aspect-ratio sail was tested to achieve high Reynolds 
numbers, and therefore three-dimensional flow at high angles of attack cannot be ruled 
out. Unfortunately neither of the series of experiments report surface-flow visualisation 
which is an easy tool in determining the large-scale flow structure. 

The experiment set out to look at the effects of sail camber distribution, camber ratio, 
Reynolds number, angle of incidence, mast diameter/chord ratio and mast angle. In total 
of 216 tests were carried out, and it was concluded that all the pressure distributions 
could be represented by one universal form of pressure distribution that could be divided 
into nine regions as shown in figure 2. 
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FIGURE 2. Universal pressure distribution: see Wilkinson (1984) 

Over the limited Reynolds-number range investigated, httle effect was observed. In- 
creasing angle of incidence tended to decrease the base pressure in the upper-surface 
separation bubble and to shorten the length of the bubble. The pressure distribution 
also flattened out on the upper surface (region IV), and the position of the trailing-edge 
separation moved upstream. Increasing d/c has the effect of increasing the size of the 
separation bubble, flattening out the pressure distribution in region IV and reducing the 
extent of the trailing-edge separation. Finally, the effect of the two sail shapes tested 
on the aerodynamic characteristics appears to be small. The pressure recovery at reat- 
tachment is larger for the NACA 63, the minimum pressure in region IV occurs further 
forward, and on the lower surface the pressure distribution is much fuller. 

From the review of Milgram and Wilkinson's work, it is obvious that the sections and 
even the masts tested may not be representative of real sails and masts. Furthermore, 
the data gained in both series of experiments provided a foundation for understanding 
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more about sail flows but is limited because three-dimension2d flow effects may be large 
due to the low aspect ratio of the airfoils tested. With modern testing techniques the un- 
derstanding gained from these seminal experiments can be built upon, further enhancing 
our understanding of this most complex flow. 

2. Research aims and objectives 
In summary, the primary aims of this experimental study are to: 
• Gain a deeper physical understanding of the flow past upwind and downwind sails 

under various angles of incidence and Reynolds numbers. 
• Create a comprehensive database for validation of numerical solvers and turbulence 

models that can be used by the (sail) research community and industry at large. 
The objectives to achieve these aims for a range of two-dimensional sail sections and 

apparent wind angles are: 
• For select upwind and downwind sections use Particle Image Velocimetry (PIV) to 

understand the effect of Reynolds number upon the flow topology, which may include 
the size and structure of leading-edge separation bubbles with and without a mast for 
the upwind case, location of trailing-edge separation if present, and the structure and 
frequency of the wake (measured using a hot wire or Laser Doppler Velocimeter (LDV)). 
Furthermore, the sensitivity of the pressure distribution and sectional lift and drag coef- 
ficients (Ci and CD, respectively) to Reynolds number will be addressed using Pressure 
Sensitive Paint (PSP) and a wake rake of total-pressure tubes. 

• For all six sail sections use a range of tools including surface oil-flow visualization, 
PSP, oil-film interferometry and/or shear-sensitive Uquid crystals, to understand the 
main flow topology on both surfaces such as mean separation locations and transition 
location if no leading-edge separation is present. 

• To measure sectional lift and drag coeflicients, and the skin-friction distribution for 
all six sail sections, with and without a mast for the upwind cases, and to correlate this 
with the flow topology. 

• For a select upwind case, to investigate in detail the interaction between the mast 
and sail for a range of sail incidences and effective wind angles with respect to the mast. 
PIV will be used to measure the flow structure and PSP and the wake rake to measure 
the section Hft coefficient and drag coefficient, respectively. 

3. Technical approach 

We propose an initial test of six sail and mast configurations, to be conducted in 
February-June 2003 in the NASA Ames 7' x 10' tunnel. The configurations are listed in 
table 1 and shown in figures 4-7. All models will be cambered plates of high aspect ratio, 
with constant cross section. Initial CFD studies have shown that the aspect ratio must 
be chosen as 15 or higher to sufficiently reduce three-dimensional effects. Measurements 
wiU be taken near mid-span. Alternatively, tangential blowing can be used with wings of 
lower aspect ratio to achieve higher Re)Tiolds numbers. This option will be investigated. 

The thin steel models will be put under tension to reduce the risk of buckling in the 
tunnel, and will be formed to the desired shape using matching machined blocks place in 
compression. The structural package MSC.Nastran will be used to aid the model design, 
with pressure loads predicted using the CFD package CFX. The sail shape will be formed 
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Sail Type Model 7' X 10' tunnel 12' tunnel 

Upwind Genoa (mid-mast height) 
Mainsail (mid-mast height) 

With and without mast 

Supplied by TNZ 
Supplied by TNZ 

Downwind   Dynarig (Maltese Falcon)    Circular arc 12.5% camber 
Genneker Circular arc 20% camber 

Genneker (TNZ) Circular arc 25% camber 

TABLE 1. List of sail configurations to be tested 

by using thin steel, with two clamping blocks, machined to the desired profile, at each 
end as shown in figure 3. Appropriate boundary conditions will be applied in Nastran 
to simulate deforming the steel sheet. The predicted pressure distribution will then be 
applied to determine the thickness of the steel sheet and the amount of spanwise tension 
required in order to maintain the sail shape across the span. A small-scale model of the 
tensioning mechanism with a scaled high-aspect ratio thin steel sail will be constructed 
to prove the concept. Even with tensioning it is expected that the sail will deflect under 
aerodynamic load. The flsdng shape of the sail will therefore be measured using pho- 
togrammetric techniques available at NASA Ames. Vibration of the sail sections may 
also be an issue, particulaxly for cases where large regions of separated flow exist. 

It is planned to test each section shape over a range of angles of incidence, and to 
determine the sectional pressure and skin friction distribution for each, from which the 
lift and drag coefficient can be found. In addition the structure of the flow away firom the 
surface will be investigated, with particular emphasis on the regions of separation near 
the leading and trailing edges. 

Compression 

I *s. Compression 

FiGtJRE 3. High-aspect-ratio 2D sail shape formed by shaped clamps placed under spanwise 
tension 
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3.1.1.  Upvnnd Sails 

A. Crook, M. Gerritsen & N. N. Mansour 

3.1. Sail geometries 

(a) Mainsail mid-height (b) Mainsail | height (c) Genoa mid-height 

FIGURE 4. Upwind sails. Source: Team New Zealand. All sections shown at 18 degrees 
apparent wind angle 

3.1.2. Reaching and downwind sails 

The America's Cup gennaker cross-sections are close to circular arcs with 20-25% 
camber. We will test 20% and 25% camber. The Dynarig sections are circular arcs with 
12.5% camber. 

FIGURE 5. Typical TNZ gennaker - 25.3% 
circular arc. Picture taken in wind tunnel at 
Auckland 

FIGURE 6. Dynarig sail configuration • 
12.5% circular arc 

3.1.3. Masts 

Source: Team New Zealand. Dimensions full-scale (near head) are 200mm x 150mm. 

(a) (b) 

FIGURE 7. Masts for upwind tests: (a) Cut-oflF ellipse, (b) Cut-off ellipse, rounded edges. 
Source: Team New Zealand 
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3.2. Experimental facilities and techniques 

All models will be tested in the 7' x 10' closed-return wind tunnel at NASA Ames. 
This wind tunnel is capable of a maximum freestream speed of 200 knots (103 m/s) 
and has a freestream turbulence intensity of approximately 0.25%.The tunnel will be 
run at a speed of 30-40 m/s, leading to a chord Reynolds number of approximately half 
a miUion. This velocity is low enough to avoid compressibility effects, but high enough 
to utiUze techniques such as PSP which need a reasonable dynamic pressure to work 
well. The closed-return tunnel also simplifies the process of seeding the tunnel for optical 
techniques such as PIV and LDV. After the experiments are performed, two designs (one 
upwind, one downwind) will be tested in the 12' pressurized tunnel at NASA Ames at 
higher RejTiolds numbers, to conduct Reynolds-number sensitivity analyses. Using this 
tunnel Reynolds numbers of up to 4 miUion per foot (6 atm pressure) can be achieved at 
a Mach number of 0.1. Designing a thin sail to withstand such high dynamic pressures 
will not be an easy task, and performing the tests at a lower pressure of 2 atm (Reynolds 
number of 1.4 million per foot at Mach 0.1) is more feasible. 

3.2.1. Pressure Sensitive Paint (PSP) 

PSP will be used on the upper and lower surface of the sail to determine the pressure 
distribution around the section, and also by integrating the pressure distribution, to 
calculate the section lift coefficient. PSP is applied to a highly-reflective surface and 
luminesces when excited molecules in the coating return to a lower energy state due to 
the collision with an oxygen molecule in a process known as oxygen quenching. Excitation 
is commonly provided by a UV lamp. The rate of quenching is proportional to the partial 
pressure of oxygen, which is in turn proportional to the air pressure. PSP is therefore most 
sensitive to changes in pressure when the dynamic pressure is high and the percentage 
change in pressure is high with respect to atmospheric pressure. 

The ratio of wind-on to wind-off intensity of the emitted Ught from the PSP is propor- 
tional to the ratio of respective pressures under conditions of constant excitation. The 
constants in the governing equation are derived either before the experiment by mea- 
suring the intensity of the PSP for various pressures and temperatures and/or during 
the experiment by using a reference pressure on the model such as that provided by a 
pressure transducer. Photogrammetry may then be required to associate the points in 
the PSP image with those on the model. 

Uncertainty in the measurement of pressure can be due to errors in the calibration 
of the response of the paint to pressure, spatial and temporal variations in illumination 
and errors in the data processing. By far the largest source of error comes from the 
uncertainty in the paint's temperature. 

Sullivan (2001) states that the accuracy of PSP is 1 mbar with a resolution of 0.5 mbar, 
and that the typical time response is 0.5 seconds, although 1 fjs has been demonstrated. 
For further information on PSP, the reader is referred to Bell et al. (2001), Mehta et al. 
(2000) and SuUivan (2001). 

Illustrations of the ability of PSP to capture the pressure distribution with high reso- 
lution over a large area and range of pressure are given in figures 8a and 8b. 

3.2.2. Oil-film interferometry 

Oil-film interferometry reUes on the principle that the rate at which oil thins on a sur- 
face is a function of the shear-stress magnitude. There are various incarnations of oil-film 
interferometry as discussed by Naughton and Sheplak (2000), although the method used 
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(a) Upper surface of an F-16 (b) High-lift wing 

FIGURE 8. Pressure distributions measured using PSP (Bell et al. (2001)) 

at NASA Ames is Fringe Imaging Skin Friction Interferometry (FISF). The interference 
between the partially-reflected light at the air-oil interface and the light reflected from 
the model surface will vary between constructive and destructive as the oil film thickness 
changes. This is observed as a series of light and dark bands or fringes, the spacing of 
which is proportional to the skin friction (figure 9). 

The oil typically used is silicone oil and is applied to the surface in either square 
patches or drops. The surface should have a high index of refraction (ideally n = 2), and 
therefore glass is ideal. For practical reasons, polished stainless steel or Mylar is often 
used. The Hght absorption of aluminium is too low to be used with PSP. 

Illumination must be provided by a coherent Hght source, although the coherence length 
can be short (a few microns) due to the small thickness of the oil film. Light sources such 
as fluorescent bulbs, sodium lamps and black lights are often used. Lasers suffer from 
the expense of special optics and also the problem of specular reflection (speckle) near 
the surface. Imaging can be achieved using CCD cameras, preferably black and white. 
Calibration of the oil viscosity and its variation with temperature is necessary, although 
the measurement of the shear stress is absolute, requiring no additional reference measure. 
Mehta et al. (2000) state that using calibrated oil and with an acciurate measurement of 
the djTiamic head and the incident light angle, it is possible to achieve accuracy in the 
skin friction coefficient, c/, better than ±5% in magnitude and ±1% in vector direction. 

Examples of oil film interferometry appUed to wing flows are given in figures 10a and 
10b. In figure 10a, oil drops are applied to a wing tip and provide both the magnitude and 
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FIGURE 9. Interference fringes produced by Fizeau Interferometry: (a) Constructive interference 
produces bright bands, whereas (b) destructive interference produces dark bands (Naughton and 
Sheplak (2000)) 

direction of the surface shear stress. In figure 10b oil patches are applied to a transport 
wing to yield the magnitude of the surfaxie shear stresses. 

3.2.3. Particle Image Velocimetry (PIV) 

Modern PIV calculates the velocity field in a plane by comparing two images containing 
particles separated by a very short time interval. The flow field of interest is usually 
illuminated by a thin laser sheet at these two times, with each laser pulse triggering the 
capture of the particle field using a cross-correlation CCD camera that is placed normal to 
the plane of the laser sheet (figure 11). This type of CCD camera is capable of capturing 
two images in very quick succession (usually 10 fj,s apart). A cross-correlation algorithm 
is then used to locate intensity peaks in both images for small areas (of the order of 
64 X 64 pixels) and this is repeated across the whole image. The peak in the correlation 
should correspond to the same particle in both images. The distance each particle moves 
in terms of pixels (and physical space via a calibration) in the time separating the two 
images can then be calculated, jdelding the instantaneous velocity vector in the plane. 
From this data other properties of the flow, such as vorticity, can be calculated (figure 12), 
and if sufficient firames are captured, flow statistics such as the rms and mean velocity 
components and therefore stresses, skewness and kurtosis can be calculated. Extension 
of the technique to measuring the out-of-plane velocity component, and therefore the full 
velocity vector, is possible by utilising perspective error. If the CCD camera is placed at 
90 degrees to the laser sheet, the angle of view at the edges of the image will decrease 
from the optimal 90 degrees at the center of the image, and the motion of particles 
perpendicular to the laser sheet can be detected. Stereoscopic or 3D PIV requires two 
cross-correlation CCD cameras placed at approximately 40 degrees to the laser sheet. 
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(a) Oil-drop method applied to a 
wing tip (Naughton and Sheplak 
(2000)) 

(b) Oil patches applied to a transport air- 
craft wing (Mehta et al. (2000)) 

FIGURE 10. Examples of oil fibn interferometry applied to aircraft wings 

This obviously causes a problem with focus as different parts of the laser sheet are at 
different distances from the camera lens. This can be overcome by using a large depth 
of field which results in a small lens aperture and low light intensity at the CCD. The 
Scheimpfiug condition for focusing solves this problem. It states that if the image plane 
if the CCD sensor and the lens plane are coincident at the focus plane of the lens, then 
the particles in the laser sheet will be in focus on the CCD sensor. 

Pulsed laser 

FIGURE 11. Typical 2D PIV setup 
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-ILL-L 

FIGURE 12. Mean spanwise vorticity measured using PIV for a high-lift system (Stanislas et 
at. (2000)) 

The temporal resolution of PIV is governed by the repetition rate of the laser and 
the CCD camera. In general these are usually 15-30 Hz, although high speed PIV at 
frequencies up to 1 MHz is possible using cinematic cameras and high frequency lasers 
and multiple CCD cameras. Spatial resolution is also limited by the CCD element and 
the number of pixels and their size. An example of a high-end CCD camera is one with 
1280 X 1024 pixels and a pixel length of 6.7 /xm. 

For more information on PIV, the reader is referred to Gharib and Daribi (2000), 
Grant (1994) and Adrian (1991). 

We will determine the pressure distribution, the size of leading-edge bubbles, the 
trailing-edge separation points and the skin friction in all tests. The pressure distribution 
wUl be measured using Pressure Sensitive Paint (PSP). Skin friction will be measured 
using oil-film interferometry or shear-sensitive liquid crystals. Particle Image Velocimetry 
(PIV) will be performed on two upwind and two downwind designs to create a detailed 
picture of the flow past the sail and in the wake. Expertise in all of the measurement 
techniques described is available at NASA Ames and Stanford. 

We will return to the 7' x 10' wind tunnel in late 2003 to test sail shapes for the Maltese 
Falcon suggested by our optimization algorithm (Doyle et al. 2002). 
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Turbulence modelling in large-eddy simulations of 
the cloud-topped atmospheric boundary layer 

By   M. P. Kirkpatrick 

1. Motivation and objectives 
This paper discusses turbulence modelling in laxge-eddy simulations of the cloud- 

topped atmospheric boundary layer. While our primary focus is on simulations of stra- 
tocumulus clouds, most of the discussion is also relevant to other types of cloud. Stra- 
tocumulus clouds were chosen because of the important role they play in the Earth's 
climate, and because the fluid dynamics associated with these clouds has a number of 
features which researchers have found difficult to model accurately. 

Marine stratocumulus clouds cover extensive areas off the west coasts of the large con- 
tinents in the subtropics. Their presence in these regions is the result of strong static 
stability due to low sea-surface temperatures and to atmospheric subsidence associated 
with the descending branch of the Hadley circulation. Due to their high albedo, stratocu- 
mulus clouds have a significant effect on the Earth's radiative heat budget. Prom analysis 
of satellite data, Klein & Hartmann (1993) calculated top-of-the-atmosphere values of 
the order of —100 Wm"^ for the net cloud radiative forcing over stratociunulus decks. 
Randall et al. (1984) estimated that the global cooling resulting from a 4% increase in 
areal coverage by mairine stratocumulus clouds would offset the expected warming from a 
doubling of atmospheric carbon dioxide. In addition to their role in the Earth's radiation 
budget, stratocumulus clouds also affect the dynamics of the atmosphere and oceans. 
Miller (1997), for example, found that stratocumulus clouds provide a negative-feedback 
mechanism which reduces the intensity of tropical convection and damps the tropical 
atmospheric circulation. Similarly, stratocumulus clouds over oceans in the subtropics 
reduce sea-surface temperatures in these regions by lowering the net surface heat flux. 
Most atmospheric general circulation models (GCMs) underpredict the amount of sub- 
tropical marine stratociunulus (Jakob 1999). In coupled atmosphere-ocean models, this 
can lead to positive sea-surface temperature biases of up to 5K. Such modeUing errors 
have been shown to have a significant influence on both the predicted circulation (Nigam 
1997) and the global radiation budget (Slingo 1990). 

The use of large-eddy simulation (LES) to study the planetary boundary layer dates 
back to the early 1970s, when Deardorff (1972) used a three-dimensional simulation to 
determine velocity and temperatine scales in the convective boundary layer. In 1974 he 
appUed LES to the problem of mixing-layer entrainment (Deardorff 1974) and in 1980 
to cloud-topped boundary layers (Deardorff 1980). Since that time the LES approach 
has been applied to planetary boundary layer problems by numerous authors (see for 
example Moeng 1986; Mason & Derbyshire 1990; Schumann & Moeng 1991 a,6; Brown 
et al. 1994; Saiki et al. 2000; Stevens & Bretherton 1999; Stevens et al. 2001) 

The popularity of the LES technique in atmospheric research is due in part to the dif- 
ficulties involved with obtaining sufficient field data to develop and test theories concern- 
ing the structure and dynamics of the planetary boundary layer. Large-eddy simulations 
provide three-dimensional time-evolving velocity and scalar fields at a resolution limited 
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only by computational resources. As such, LES is often used to isolate particular phys- 
ical processes of interest such as entrainment across the inversion (Stevens et al. 2000) 
or transition from one type of cloud to another (Wyant et al. 1997). It is also used to 
generate databases of different atmospheric flow regimes in order to evaluate, refine and 
develop parameterisation schemes for use in large-scale models (eg. Lappen & Randall 
2001). At the other end of the spectrum, LES is used as a platform on which to develop 
reliable models of cloud microphysics and radiation (Ackerman et al. 2000). 

In spite of an increasing reliance on LES as a tool for developing and testing cloud 
theories and models, there is still considerable uncertainty concerning the fidelity of the 
simulations themselves. While LES has been shown to be relatively robust for simple cases 
such as simulations of a clear, convective boundary layer (Mason 1989), model intercom- 
parisons for more complex cases have shown large variations in predictions of important 
statistics and bulk parameters. For example, in the 1995 Global Energy and Water Cycle 
Experiment (GEWEX) Cloud System Studies (GCSS) model intercomparison, Brether- 
ton et al. (1999) compared simulations of a smoke cloud beneath a temperature inversion. 
Radiative cooling at the top of the cloud drives convection, which leads to entrainment 
across the inversion and to growth of the boundary layer. The authors found that the 
entrainment rates and other statistics predicted by the various LES codes differed by 
up to a factor of two. Similar entrainment processes occur at the top of stratocumulus 
clouds, although with the added complexity of latent-heat transfer due to condensation 
and evaporation of cloud droplets. A second example is the recent intercomparison of 
simulations of trade-wind cumuli by Stevens et al. (2001). Here again, important pa- 
rameters such as stratiform cloud firaction and the variance of total-water mixing ratio 
were found to be highly sensitive to the choice of numerical method, spatial resolution 
and subgrid-scale turbulence model. Bulk parameters such as boundary-layer height, en- 
trainment rate and cloud fraction are important variables in the parameterisations used 
in global circulation models. It is therefore essential that LES be made robust in its 
prediction of these variables if it is to be used as a tool for development and tuning of 
parameterisations for large scale models. 

One of the main problem areas in large-eddy simulations of clouds is the accurate rep- 
resentation of processes occurring close to an inversion. Here, strong stable stratification 
reduces the size of the energetic eddies considerably, so that they are generally poorly 
resolved by simulations. Bretherton et al. (1999), for example, identify an "undulation" 
length scale given by Zu = Zi/Ri (where Zi is the height of the inversion and Ri the 
Richardson number) which is of the order 5 - 10 m in a strong inversion. Meanwhile, the 
grid-cell dimensions used for large-eddy simulations of the planetary boundary layer are 
typically 25 - 100 m, although, with advances in computer technology, highly-resolved 
simulations are now becoming possible. Stevens et al. (2000), for example, recently per- 
formed stratocumulus simulations at grid sizes down to 8 m in the horizontal directions 
by 4 m in the vertical direction. Even at this resolution, however, they found the pre- 
dicted entrainment rate and entrainment efficiency to be sensitive to the subgrid model 
and numerics. A second reason for the difficulties encountered in modelling processes 
close to an inversion is that the stable stratification tends to damp vertical motions, 
making the turbulence in this region much more anisotropic than in an unstratified envi- 
ronment. Consequently turbulence models often use one or more corrections to account 
for the effects of stratification. In clouds, additional buoyancy sources result from energy 
transfer due to condensation and evaporation of water, and some authors (eg. MacVean 
& Mason (1990)) recommend applying further corrections to account for these processes. 
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An alternative to using such corrections is to adopt a dynamic approach, in which the 
parameters in the subgrid-scale turbulence model are computed at each point in space 
and time using information contained in the resolved velocity and scalar fields. This 
approach removes the need to make modelling decisions concerning the coefiicients and 
length scales in the subgrid model. It also removes the need for corrections to account 
for buoyancy effects since all this information is obtained directly from the resolved flow- 
field. 

The dynamic approach, first proposed by Germano et al. (1991), has been used with 
considerable success for complex engineering flows (see Boivin et al. 2000; Branley & 
Jones 2001, for example), however its application to atmospheric flows has been limited. 
This is due in part to arguments by authors such as Mason & Brown (1999) to the 
effect that the dynamic procedure is inappropriate for atmospheric appUcations. These 
arguments are based on the premise that the d3aiamic procedure requires a filter cut-off 
wavenumber in the inertial subrange. This is incorrect. The theory behind the dynamic 
procedure assumes only that the same subgrid model can be used for both the resolved 
field and the test-filtered field. It is in fact the Smagorinsky model (Smagorinsky 1963), 
which is widely used for atmospheric simulations even at very coarse resolutions, whose 
derivation assumes resolution of the inertial subrange. 

Bohnert (1993) tested the dynamic procedure in combination with the Smagorinsky 
model for simulations of clear and cloud-topped planetary boundary layers. The simula- 
tions were performed at a Reynolds number lower than that of a realistic atmospheric 
boundary layer and used simple parameterisations for cloud physics and radiation. In 
order to stabiUse the model, it was necessary to average the calculated coefficient field 
over horizontal planes. Nevertheless, these results are encoviraging. The dynamic model 
gave results comparable to, or better, than those obtained using the standard constant- 
coefficient Smagorinsky model with a Richardson-number correction. 

The objective of the present study is to test the dynamic procedure in large eddy 
simulations of a marine stratocumulus cloud deck. The simulations will be performed at 
realistic Reynolds and Rayleigh numbers, with conditions matching those measured dur- 
ing the 2001 DYCOMS-II field experiment. This test case has a number of the features 
discussed above which tj^jically cause difficulties in cloud simulations, namely strong sta- 
ble stratification, and buoyancy sources within the cloud due to radiation, condensation 
and evaporation of water droplets. Following Zang et al. (1993), we use the mixed model 
as a base subgrid model, rather than the Smagorinsky model. The mixed model is a 
combination of the scale-similarity model of Bardina et al. (1980) and the Smagorinsky 
model. The dynamic mixed model of Zang et al. has been found to be more stable than 
the dynamic Smagorinsky model and it is hoped that its use will remove the need for 
averaging over horizontal planes. This is important in the present case, since horizontal 
planes close to the cloud-top contain both stably and unstably stratified regions. Horizon- 
tal averaging of the calculated model parameters would prevent the dynamic procedure 
from distinguishing between these two fundamentally different flow regimes. 

The author is currently implementing the dynamic mixed model in the LES code, 
DHARMA, written by David Stevens. This code has performed well in model intercom- 
parisons (see Bretherton et al. 1999; Stevens et al. 2001) and has also been used for a 
number of high-resolution simulations (Stevens & Bretherton 1999; Stevens et al. 2000, 
2002) where it was shown to scale well on massively parallel architectures. In addition, 
the code has the option to use either standard parameterisations for radiation and cloud 
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microphysics, or the more complex models of Ackerman et al. (1995), which treat the 
cloud microphysics expHcitly and include a detailed treatment of radiative transfer. 

In the following, we describe the governing equations, the numerical methods, and the 
parameterisations and models used in the DHARMA code. We rewrite the governing 
equations in filtered form and outUne a turbulence closure based on the dynamic mixed 
model of Zang et al. Finally we discuss the test case and simulations which will be used to 
assess the performance of this approach to turbulence modelhng in numerical simulations 
of clouds. 

2. Governing equations 

The basic equations governing the d3Tiamics of the cloud-topped atmospheric boundary 
layer comprise equations for conservation of mass, momentum, energy and total water. 
In addition, radiative heat transfer and cloud microphysics must also be modelled. Cloud 
microphysics refers to the transitions between vapor, liquid and solid-phase water and 
the djmamics of the liquid and soHd-phase components. 

The goveriung equations are written in the anelastic form of Ogura & PhiUips (1962) in 
which the thermodynamic variables such as pressure p axe decomposed into an isentropic 
base state po (corresponding to a uniform potential temperature ^o) and a dynamic 
component. Following Clark (1979), the dynamic component is further decomposed into 
an initial environmental deviation in hydrostatic balance pi and a time-evolving dynamic 
perturbation p2 to give 

p{x,y,z,t)=po{z)+pi{z)+p2{x,y,z,t). (2.1) 

The resulting continuous equations written in Cartesian tensor notation are 

duj      1 d(goUiUj) _    dll        6^2 
dt      go     dxj dxi      ' 6o 

+H^f + H^^ + ir^°"°'", (2.2) 

89*      1 d{go9*Uj) f,       j^g       gy, j^ 

'df ^ To    dx^     ~ "'! + "'r + ^e: + ^e; > 
dqt_      1 d{QoqtUj) _        f,        j^s 

dt'^ go     dxj 9'   ^    9' 

d{goUj) 

dxj 

(2.3) 

(2.4) 

= 0. (2.5) 

Here Ui is the velocity component in the i direction, g is the density, 11 is the perturbation 
pressure P2/go, 9i is the acceleration due to gravity, qt the total water naixing ratio and 
^i — {^i — ^o)/9o is a scaled hquid-water potential temperature. Total-water mixing ratio 
is the sum of the Uquid and vapour mixing ratios, 

q, = q^ + q^ = il±£l, (2.6) 
Qd 

where g^, gv and gd are the density of the condensed water, the water vapour and the 
dry air respectively. Liquid-water potential temperature is defined as 

e, = e-^. (2.7) 

Here L is the latent heat of vaporisation, Cpd is the specific heat at constant pressure 
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for dry air and TTQ = f-^^ )  " with pret a reference pressure and Rd the gas constant 
\Pref / 

of dry air. The virtual potential temperature 0„ appearing in the buoyancy term of the 
momentum equations is given by 

6^ = 6 + 00 
Rd_^ 

Rv 
qv -Qc (2.8) 

where Rd and Rv are the gas constants of dry air and water vapor respectively. 
The interior forcings H are body forces which parameterise the effects of: subsidence 

jjsub.^ horizontal large scale advective tendencies H^^; and the CorioUs force iJ^orioHs 
In addition, a Rayleigh damping term H^^ is applied to the top third of the domain to 
absorb gravity wave energy. The subsidence and large-scale advective tendencies result 
from the fact that the LES domain is not isolated, but is embedded within the global 
circulation. These forcings are generally specified as functions of z/zi where z is the 
vertical height, and Zj is the height of the inversion. As an example, in the case of the 
trade-wind cumulus intercomparison of Stevens et al. (2001), the subsidence velocity 
Wsub was specified to vary Unearly between 0 at the surface and 6.5 mm s~^ at Zi. The 
subsidence forcings then become, 

Ht: sub 
■  Wgub 

dUi 

rrsub _ ,,,   ^ ^^l 
rig,     — W3ub~a—) 

TTSub 
■ Wsub dz 

(2.9) 

(2.10) 

(2.11) 

The large-scale advective tendencies were specified as 

dt 

dqt 

-1.1575 X 10-^ 
LS 

dt 
= -1.58 X 10"^ 

LS 

(2.12) 

for z < Zi. Above the inversion, the terms were linearly reduced to zero over a distance 
of 300 m. The Coriolis term is given by 

H'^'°^'' = [fv,-fu,0], 

with the Coriolis parameter / 
and ^ is the latitude. 

(2.13) 

2u) sin (j>, where w is the angular velocity of the Earth 

3. Filtered equations 

In LES, a spatial filter is applied to the governing equations. The application of a 
spatial filter G to a function / is defined as 

7(x)= /G(x-x';A(x))/(x')dx', 
JQ 

(3.1) 

where A is the characteristic width of the filter. A box filter is used here as it fits 
naturally into the finite volume discretisation. The filter width is written in terms of the 
cell dimensions, A = 2(AxAj,A2)^/^. 
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Filtering the equations for conservation of momentum and mass yields 

dui      1 d{gQUiUj) _    dU        6^2     dTij 
dt      Qo     dxj dxi      ' 6o      dxj 

+ff:"'+:ffr+B:"'°"', (3.2) 
2^=0. (3.3, 

Here it is assumed that the isentropic fields ^0 and 60, and the forcings H, vary slowly in 
space, so that extra moments resulting from the application of the filter to these terms 
may be neglected. The extra term in the momentum equations is the subgrid-scaJe stress 
or SGS tensor, 

Tij = (ulUj - UiUj), (3.4) 

which represents transport of momentum by subgrid-scale turbulence. This term must 
be modelled to close the equations. The Smagorinsky eddy-viscosity model (Smagorinsky 
1963) assumes that the anisotropic part of the SGS stress tensor is proportional to the 
large scale strain rate tensor, 

nj - -^SijTkk = -2uTSij, (3.5) 

where 

and that the eddy viscosity I/T is itself a function of strain rate and filter size, 

UT = CA^ \S\. (3.7) 

Here  |5| = ■J25y5ij and C is the dimensionless model coefiicient. In the basic model, 

C is specified a priori and is often written as the Smagorinsky coefficient C3 = yfC. For 
incompressible flows, the isotropic part of the SGS stress tensor, Tfcfc, is absorbed into 
the pressure term. 

For atmospheric simulations this basic model must be modified to account for the 
effects of stratification. This typically takes the form of a correction to the eddy viscosity 
to give 

■,T2 1771 
VT = CA  \S\^/\-RilPrT, (3.8) 

where Ri = N^/\S\^ is a gradient Richardson number and PrT is a turbulent Prandtl 
number. The buoyancy frequency N for dry air is defined as 

^' = -11- (-) 
In the DHARMA code, this formula is modified, following MacVean & Mason (1990), to 
include the effects of evaporation and condensation. 

As discussed in the previous section, while these corrections have been shown to give 
good results for the relatively simple flows for which they were derived, in more complex 
flows the results are often highly sensitive to the choice of model coefficients and length 
scales. Apart from the need to set the model coefficient and length scale a priori, the 
Smagorinsky model has a number of other problems, 
(a) The model assumes that the principal axes of the SGS stress tensor are aligned with 
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the resolved strain-rate tensor whereas analysis of DNS results has shown this not to be 
the case. 
(b) The model does not predict the correct asymptotic behaviour near a solid boundary 
or in laminar/turbulent transitions. 
(c) The model does not allow SGS energy backscatter to the resolved scales. 

To overcome item (a) in this list, Bardina et al. (1980) proposed a model based on an 
assumption of similarity between the unresolved scales and the smallest resolved scales. 
In their "scale similarity model" the subgrid-scale stress is given by 

r?- = {W^j - Ijlj)" , (3.10) 

where superscript a specifies the anisotropic part of the tensors. Comparisons with DNS 
results show that the scale similarity model, which does not require alignment between 
the SGS stress tensor and the resolved strain-rate tensor, represents the structmre of 
the SGS stress more accurately than does the Smagorinsky model. The model does not, 
however, dissipate sufficient energy and is usually combined with the Smagorinsky model 
to form a "mixed model". 

Items (b) and (c) were addressed by Germano et al. (1991) who proposed a dynamic 
procedure that calculates the model coefficient dynamically at each point in space and 
time based on local instantaneous flow conditions. While the procedure can be used with 
any subgrid model, Germano et al. demonstrated the approach with the Smagorinsky 
model. The resulting dynamic Smagorinsky model has the correct asymptotic behaviour 
near soUd boundaries and in laminar flow, and allows energy backscatter. Unfortunately, 
values of the predicted model coefficient tend to fluctuate considerably and some form of 
averaging, usually along homogeneous directions, is required to avoid numerical instabil- 
ity. In the present context, such averaging is problematic since there is no homogeneous 
direction. The stratocumulus cloud-top contains regions of both stable and unstable 
stratffication within the same horizontal plane. 

A number of variants of the dynamic procedure have been proposed to overcome the 
need for averaging. The locaUsed dynamic models of Ghosal et al. (1992) and Piomelli 
& Liu (1995) are more stable but add to the complexity of the model. Instead, we have 
chosen to adopt the approach of Zang et al. (1993) who used the dynamic procediu'e 
with the mixed model as a base model, father than with the Smagorinsky model. Zang 
et al. tested the dynamic mixed model for rotating stratified flow and reported a signifi- 
cant reduction in fluctuations of the coefficient compared with the dynamic Smagorinsky 
model. The dynamic mixed model has the added advantage that the scale similarity term 
removes the restriction of tensor aligimient and provides better spectral representation 
of the subgrid-scale stress. 

The mixed model for the subgrid-scale turbulent stress is written 

T?j = -2CA^ |5| 5y + {W^j -SiSj)° 

s —2uTSij + (Silj- - SjSj)", (3.11) 

where the first term on the right-hand side is the Smagorinsky component of the model 
while the second term represents the scale similarity component. The dynanuc procedure 
involves the appUcation of a test filter C^) to the velocity field. By assuming that the same 
subgrid model can be used to represent the unresolved stresses for both the grid-ffitered 
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and test-filtered fields, an expression is derived for the required parameters, 

CA' = -^^^^i—^i^^, (3.12) 

where 
Lij = UiUj - UiUj, (3.13) 

Hij = UiUj — UiUj, (3.14) 

and 

Mij = a"" 0\%j - 0ii >        " = ^/^- (3-15) 

Using these relations, the momentum equations become 

dui      1 d(QoUiUj) dU  ,     ^u2  ,    ^   /r,    o       /=     = = \"\ 

+ HZ'' + Hi: + HT'''''. (3.16) 

Following a similar argument the spatial filter is apphed to the energy equation giving 

^ ^ 19(^ ^ _|7 ^ ^^"^ ^ ;^i-5 ^ jj^^J + ;^^^. (3.17) 
OT ^0        9Xj OXj till 

The SGS energy flux, 

is approximated using a mixed model analogous to that used for the momentum equa- 
tions, 

with the eddy diffusivity computed using the eddy viscosity calculated for the velocities 
and a turbulent Prandtl number. Substituting into (3.17), the filtered energy equation 
becomes 

dt      Qo     dxj dxj yPrerOxj     V ^ '       ^ Vy 

+ Hlf + H^e' + HlJ + H7/. (3.20) 

Finally, by analogy, the filtered transport equation for total water is written 

^ ^ 1 djeogtUj) ^     ±_ (  VT   dq, _ ,=-= _= - A 
dt'^ Qo     dxj dxj \PrgT dxj     ^ ^^*      '^^') 

+ Hi:' + H^J. (3.21) 

The turbulent Prandtl numbers, Prgr and Pr,T, in the subgrid models for the scalar 
variables are determined d3Tiamically using the approach of Moin et al (1991). This 
procedure is similar to that used to calculate the Smagorinsky coefficient outHned above. 
In this way, all coefficients and length scales in the subgrid-scale models for the flow 
variables are calculated dynamically, based on information in the resolved scalar and flow 
fields, and the need for a priori specification of parameters and corrections is removed. 
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4.   Microphysics and radiation models 

The DHARMA code has the option to use either a standard parameterisation for 
cloud microphysics, or the more complex expUcit model of Ackerman et al. (1995). The 
code includes two standard parameterisations: a bulk-condensation model, in which cloud 
water QC is found by inverting Wexler's expressions for saturated vapor pressure (Wexler 
1976,1977) using the method of Flatau et al. (1992); and the parameterised microphysics 
of Wyant et al. (1997) which includes a treatment of precipitation. 

The cloud microphysics model of Ackerman et al. explicitly models the dynamics of two 
types of particle: condensation nuclei (CN) and water droplets. Particle size distributions 
are defined by C{r, x, t) where Cdr is the mean number concentration (per unit volume) 
of particles with radius between r and r + dr. A filtered particle-continuity equation is 
solved for each particle size. 

dC , djCuj) djVfC) ^    djgrC) 

+ \f    K.ir, (r-3 - r'3)V3)^(/)C((r3 - r'')'/')dr' 

-C\        Kc{r,r')C{r')dr' 
Jrmin 

Here Vf is the particle sedimentation velocity, S„ represents paxticle creation, Rn is the 
particle removal rate, gr is the condensational growth rate and Kc is a coalescence kernel. 
The first term on the right hand side is the particle flux divergence due to sedimentation. 
This flux is modelled using the Stokes-Cunningham expression for Re < 10"^ and the 
interpolation of Beard (1976) for higher Re. The second and third terms on the right hand 
side represent particle creation and transitions between CN and droplets. The fourth term 
is the divergence in radius-space due to condensation and evaporation. The first integral 
represents creation of particles due to collisions of smaller particles while the second 

integral represents the loss of particles due to collisions with other particles. He and 

He are the subsidence and large-scale advective tendencies similar to those appearing 
in the gas phase equations. The final term is a turbulent diffusion flux representing 
the subgrid-scale stresses resulting from the filtering operation. The turbulent Prandtl 
number PrcT is set equal to that calculated dynamically for qt. 

Ackerman et al. (1995) give further details on modelling of condensation growth, CN 
activation, total evaporation of droplets, particle coUisions and new particle creation. 
Particle size distributions for CN and droplets are each typically divided into 20 bins with 
geometrically increasing size such that the particle volume doubles between successive 
bins. 

Because time scales for the cloud microphysics are typically smaller than those for the 
large-scale dynamics, the microphysics equations are integrated over a series of smaller 
substeps within each time step of the flow-dynamics model. Also, while the flow-dynamics 
model uses total-water mixing ratio qt and hquid-water potential temperature 6* as 
the thermodynamic variables (see (2.3) and (2.4)), the microphysical model uses the 
concentration of water vapour G and the potential temperature 6. The equations for 
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these variables are written 

dG     djGuj) 
dt dxj 

47re„ /        r'^gr{r')Cir')dr' 

+ Ha' + H'a', (42) 

^-^=     ^(g^f-(^-^^•^))-^r%^f.    (4.3) 
Here g^ is the density of liquid water and the integral in (4.2) represents vapour ex- 
change with the droplets. The turbulent Prandtl numbers are those calculated for the 
corresponding variables in the flow-djniamics model. 

The fluxes of particles and water vapour across the lower boundary are calculated 
using Monin-Obukhov similarity functions. Here, the model integrates the surface-layer 
flux-profile relations of Businger et al. (1971) following the method of Benoit (1977). 
Lateral boundaries are periodic and at the upper boundary the flux divergence is set to 
zero. 

Radiation is modelled in difl'erent ways depending on the requirements of the particular 
study at hand. A simple approach, often used for model intercomparisons, is to parame- 
terise radiation as the sum of two components: a clear-sky radiative-cooUng component, 
typically taken to be a fixed -2 K/day everywhere below the inversion; and a cloud- 
associated "Beer's Law" component. In the latter, long-wavelength radiative cooling is 
assumed to be proportional to the liquid-water content and is exponentially attenuated 
as the overlying Uquid-water path increases. The resulting radiative heat flux Fr is then 
given by 

Fr{z) = Fr{H)exp ( -Ka I   Qoqcdz] , (4.4) 

where H is the height of the domain. 
A more complex approach models radiative heat transfer following the method of 

Toon et al. (1989). The model computes multiple scattering over 26 solar wavelengths 
(0.26 ^m < A < 4.3/im) and absorption and scattering over 14 infrared wavelengths 
(4.4 /im < A < 62/im). Blackbody energy beyond those wavelength domains is included 
to agree with the Stefan-Boltzmann law. An exponential-sum formulation is used to treat 
gaseous absorption coefficients while the optical properties of particles are determined 
through Mie calculations in which the complex refractive index for hquid water is used 
as interpolated from the datasets of Painter et al. (1969), Palmer & Williams (1974) £ind 
Downing & Williams (1975). The model uses a value for carbon dioxide concentration 
appropriate to the year of the study. Measurements of the present global annual mean 
carbon dioxide concentration give a value of approximately 370 ppm by volume (w 10% 
higher than in the early 1980's). The ozone profile is taken from the U.S. Standard 
Atmosphere (NOAA 1976). 
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5. Numerical method 
The numerical method is described in detail by Stevens & Bretherton (1996). The 

equations are integrated using a forward-in-time projection method based on a 2nd-order 
Runge-Kutta scheme similar to that of Bell & Marcus (1992). The integration proceeds 
as follows: 
- advance velocities to t = n + 1/2 using explicit Euler 
- solve a Poisson equation and do pressure correction a,tt — n + 1/2 
- advance scalars to t = n -I-1 
- advance velocity tot = n + l using a modified trapezoid rule 
- solve Poisson equation and do pressure correction at i = n -H 1 
The projection procedure is described in detail by Almgren et al. (1998). 

The spatial discretisation is performed on a staggered grid (Arakawa C). Second-order 
central differences are used for diffusion terms and pressure gradients while the advection 
terms use a modified version of the "Uniform Third-Order Polynomial Interpolation Al- 
gorithm" (UTOPIA) of Leonard et al. (1993). The modified scheme developed by Stevens 
& Bretherton (1996) includes additional transverse correction terms which improve the 
stability of the scheme while maintaining its accuracy. For the scalar equations, the 
3D flux limiter of Zalesak (1979) is used to ensure a monotonic solution. Soinrce terms 
are computed using the second-order accurate method of Smolarkiewicz & Pudykiewicz 
(1992) and Smolarkiewicz & Margolin (1993). Stevens and Bretherton show that the 
overall scheme is second-order accurate in space and time, energy-conserving and stable 
up to a CFL number of 1.0. 

At the lower boundary, surface fluxes of momentum, d* and g* axe calculated using the 
same similarity relations as those used for water vapour and particle fluxes (see Section 4). 
The lateral boundaries are periodic while the top boundary uses a rigid lid. As discussed 
above, numerical problems due to gravity waves reflecting from the top boundary are 
prevented by using a Rayleigh damping layer in the upper third of the domain. 

6. Future plans 
The performance of the dynamic mixed model will be tested using a series of simula- 

tions of a nocturnal marine stratocumulus cloud deck. The particular test case chosen is 
the DYCOMS-II field experiment which took place off the coast of San Diego in July, 
2001. DYCOMS-II is an acronym for "Dynamics and Chemistry of Marine Stratocumulus 
- Phase II: Entraimnent". The purpose of the experiment was to coUect data for use in 
testing large-eddy simulations of nocturnal stratocumulus. In particular, the experiment 
focused on cloud-top processes involved in entraiimient. 

The domain to be used for the simulations has size 3.2 km x 3.2 km x 1.5 km and is 
periodic in the horizontal directions. Two sets of simulations will be performed: one set 
using the dynamic mixed model and the other using the classical Smagorinsky model with 
the standard corrections. Each set comprises a series of simulations at grid resolutions 
ranging firom coarse resolution (32 m horizontal by 16 m vertical grid size) to very fine 
resolution (4 m horizontal by 2 m vertical). Previous studies (eg. Stevens et al. 2000) 
indicate that all energetic scales will be resolved in the very fine resolution simulations, 
so that these simulations can reasonably be used as a benchmark for comparing the 
performance of the subgrid-scale turbulence models. 

Comparisons will be made with a view to answering the following questions: 
1) Does the dynamic mixed model more accurately represent the subgrid-scale turbulence, 
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in the sense that it reduces the difference between the coarser grid solutions and the 
benchmark solution? 
2) How do the subgrid-scale stresses predicted by the dynamic model compare with those 
of the standard model? Does the dynamic model, for example, predict a Richardson- 
number dependence in regions of stable stratification similar to that used in the standard 
model? 
3) How does the dynamic model perform for simulations in which the inertial subrange 
is not well resolved? 

For coarser simulations in which the inertial subrange is not resolved, Stevens et al. 
(1999) found that the turbulent kinetic energy equation approach gives results which 
are less dependent on grid resolution than those obtained using a Smagorinsky model. 
A possible future study would test the performance of a turbulence closure scheme in 
which the dynamic procedure is used to determine the coefficients in the turbulent kinetic 
energy equation. 
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Secondary shear instability as a source of 
turbulence in the solar tachocline 

By K. Petrovay^ 

1. Introduction 
The tEichocline is a thin layer in the interior of the Sun characterized by stable strati- 

fication and a strong rotational shear in both the radial and latitudinal directions. This 
layer is thought to be of crucial importance in the origin of solar activity phenomena. 
The origin and character of turbulence in this layer is poorly known, even though tur- 
bulence has an important role in determining the overall structmre of the tachocline. 
Owing to the strongly stable stratification, the mean radial shear is stable, while the 
horizontal shear is expected to drive predominantly horizontal, quasi-2D motions in thin 
slabs. However, here I suggest that a major source of 3D overturning turbulent motions 
in the tachocline is the secondary shear instability due to the strong, random vertical 
shear arising between the uncorrelated horizontal flows in neighbouring slabs. A simpli- 
fied one-dimensional model is presented for the tachocline in this case. It is found that 
Maxwell stresses due to an oscillatory poloidal magnetic field of a few hundred gauss 
are able to confine the tachocline to a thickness of a few megameters. The integral scale 
of the 3D overturning turbulence is the buoyancy scale, on the order of 10 km and its 
velocity amplitude is a few m/s, yielding a vertical turbulent diflFusivity on the order of 

IQScmVs. 
The enormous spatial scales of astrophysical flows, such as the flows in stellar interiors 

and atmospheres, lead to extremely high Reynolds numbers, so these flows are usually 
strongly turbulent. Studying the flows in the "star in our backyard", the Sun, ofiiers 
a chance to study turbulent flows in conditions and parameter regimes way beyond the 
reach of laboratory experiments, terrestrial observations, and often even direct numerical 
simulations. Further importance to these studies is given by the influence the Sun exerts 
on the cosmic environment of our planet, determining space weather, and indirectly 
influencing the terrestrial cUmate. 

The rich variety of solar activity phenomena is the product of a magnetohydrodynamic 
dyTiamo operating in the Sun. It is currently thought that a thin layer of the solar interior, 
known as the tachocline, plays a crucial role in the solar dynamo mechanism, and it can 
be essentially regarded as the seat of the dynamo. Yet the fluid dynamical properties of 
this layer are poorly known —in fact even its existence has only been known for little 
more than a decade, from heUoseismic measurements. 

From the fluid dynamicist's point of view, the tachocline is an MHD shear flow in the 
azimuthal direction in a thin, rotating spherical shell with both radial and latitudinal 
shear and a strongly stable stratification (Richardson number ~ 10^). It is situated at 
0.69 RQ (1 RQ = 698 Mm is the solar radius) and its thickness is less than a few percent 
of RQ (Kosovichev, 1996). There are indications that at high latitudes the tachocline is 
situated at shghtly shallower depths, r = 0.705RQ, and it may also be marginally thicker, 
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FIGURE 1. Sketch of the geometry of the solar tachocline (proportions distorted) 

(Basu & Antia, 2001) —cf. figure 1. The radiative interior below the tachocline rotates 
like a rigid body, while the convective zone lying above it is characterized by a latitudinal 
differential rotation which can be regarded independent of depth to a first approximation. 
The tachocline itself is defined as the transitional layer between these two regimes. The 
rigid rotation rate of the interior equals the rotation rate of the convective envelope at 
an intermediate heliographic latitude of about 35°, so the radial shear changes sign at 
this latitude in the tachocline. 

The differential rotation in the convective zone is driven by turbulent angular momen- 
tum transport due to nondiagonaJ terms of the Reynolds stress tensor, which in turn 
arise as a consequence of the effect of the Coriolis force on turbulence. As pointed out by 
Spiegel & Zahn (1992), in the absence of turbulence and magnetic fields this differential 
rotation should penetrate deep (~ RQ) into the radiative interior below. The empirical 
fact that the tachocline is quite thin thus implies the presence of a strongly anisotropic 
(predominantly horizontal) transport of angular momentum. This may either be due to 
anisotropic turbulence or to Maxwell stresses in a predominantly horizontal magnetic 
field. While strongly anisotropic (horizontal) turbulence is the natural expectation in a 
stably stratified shear layer, the actual calculations (Garaud, 20016; Miesch, 2002) show 
that the horizontal motions arising from a weak nonlinear instability of the latitudinal 
shear do not lead to an efiicient transfer of angular momentum. This leaves us with 
magnetic fields as the prime candidate to confine the tachocline to its observed size. 

Depending on the value of the magnetic diffusivity, this magnetic field may either be 
a weak permanent, primordial field pervEiding the solar interior, or the strong oscillatory 
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field generated by the solar dynamo. A magnetic field oscillating with a circular frequency 
tjcyc = 27r/P, (P = 22 years is the solar cycle period) is known to penetrate a conductive 
medium only down to a skin depth of 

i?skin = (2»7Myc)'/' (1-1) 

where rj is the magnetic diffusivity. Basu & Antia (2001) have recently calibrated the 
thickness of the tachocline: the scale height resulting from their fitting profile is if ~ 
10 Mm. Accepting this value it follows that for 77 ^ 10® cm^/s the dynamo field cannot 
penetrate the tachocHne, and we can expect the tachocUne to be pervaded by the internal 
primordial field. On the other hand, for 77 ^ 10^ cm^/s the tachochne dynamics should 
be governed by the dynamo field. As the associated diffusive and Lorentz timescales are 
also very different, these two cases basically correspond to the case of "slow" and "fast" 
tachocline, discussed in the literature (Oilman, 2000; Brun, 2001). 

This shows that turbulence plays a key role in determining the structure of the 
tachocline. Unfortunately, while the thermal stratification in the tachocUne is relatively 
well known (as summarized in Section 2 below), its fluid djoiamical properties, including 
the precise profile of the rotational flow v{r, 6), the meridional flow, and the characteristics 
of turbulence, are very poorly constrained by observations. Direct numerical simulations 
of stratified shear flows are currently Hmited to much lower values of the Richardson and 
Reynolds numbers (Jacobitz & Sarkar, 1998). In consequence, we need to rely on theoret- 
ical arguments concerning the properties of turbulent motions in such conditions. On the 
basis of such arguments, simplified one- or two-dimensional models may be constructed 
for the mean flow, or appropriate subgrid closure schemes may be constructed for full 3D 
large-eddy simulations. In the lack of sound theoretical foundations for subgrid closures, 
all tachocUne models pubUshed to date have either simply ignored turbulence (Riidiger 
& Kitchatinov, 1997, MacGregor & Charbonneau, 1999, Garaud, 2001a), or assumed 
arbitrary fixed scalar turbulent diffusivities in 2D mean flow models (Forgacs-Dajka & 
Petrovay, 2001, Forgacs-Dajka & Petrovay, 2002) and in LES (Miesch, 2001, 2002). 

The aim of the present work is to attempt to remedy this situation by considering, on 
the basis of the known stabiUty criteria, the possible sources of turbulence in a strongly 
stably stratified shear flow with both vertical and horizontal shear, and discussing the ex- 
pected properties of the turbulence generated by it, on the basis of a dimensional analysis 
of the K-e equations. As our analysis does not consider the effects of spherical geometry, 
rotation, or magnetic fields, it should only be regarded as a fist step towards a more 
comprehensive theoretical analysis of the problem of turbulence in the solar tachocUne. 
These theoretical arguments can be found in Section 3. Then, in Section 4, as an il- 
lustration of the use of such theoretical considerations, our prescription for calculating 
the turbulent diffusivity in the tachocUne, equation (3.6), is incorporated in a simpUfied 
one-dimensional model for the tachocUne. The results show that MaxweU stresses due to 
an osciUatory poloidal magnetic field of a few hundred gauss (a rather moderate value) 
are able to confine the tachocUne to a thickness of a few megameters. Finally, Section 5 
concludes the paper by discussing the impUcations of this result. 

2. Conditions in the tachocline 

The thermal stratification of the Sun is quite accurately known firom a compari- 
son of standard solar models with heUoseismic inversion results. Various characteristic 
timescales and diffusivities in the tachocUne region are plotted in figure 2. As mentioned 
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FIGURE 2. Characteristic diffusivities and timescales in the solar tachocline (CGS units) 

above, the solar radius is RQ = 698 Mm, the outer 29 % of which comprises the convective 
zone (CZ). Owing to the high efficiency of convective energy transport, this convective en- 
velope is nearly adiabatically (isentropically) stratified, i.e. the superadiabatic lapse rate 
0 < AV = V — Vad <S l-t The radiative interior below the convective zone is character- 
ized by significant negative values of AV. For rough estimates, a useful approximation 
in the tachocline region (i.e. near the top of the radiative zone) is AV ~ —0.015z[Mm], 
where z = j-bcz — r is the depth below the bottom of the convective zone at a radius 
value of rbcz = 0.71RQ. On the other hand, the pressure scale height in this region is 
Hp = —P dz/dP ~ 50 Mm. With 5 = 5-10^ cm^/s, this yields a Brunt-Vaisala frequency 

^Bv[s-'] = -AV 
Hp 

1.5-10-^0 [Mm], (2.1) 

i.e. in the mid-tachocline, at z = H ~ 10 Mm (if the Basu & Antia, 2001, calibration of 
-3e-i H is accepted) iVev ~ 10" s 

A displaced mass element will then oscillate around its equilibrium position under the 
action of buoyancy on a timescsJe iVgy ~ 1000 s. The amplitude of the oscillation is 

t V is standard astrophysical notation for the lapse rate d In T/d In P. 
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clearly ~ V^/NQV, SO in the presence of turbulent motions, these motions wUl be limited 
to a vertical scale k = K^/^/NBV, called the buoyancy scale. {K = ■uf is the kinetic 
energy in the vertical component of motions.) On the other hand, as an elementary 
estimate gives i/ ~ ii'^/e for the vertical turbulent diffusivity, one has lb ~ {y/NsvY^^- 
Vertical overturning motions on scales exceeding h will be strongly damped by gravity 
wave emission. 

3. The secondary shear mstability 

The pole-equator difference in the rotational rate of the convective zone is about 30 % 
of the equatorial rotation rate. Taking half of this value to be the characteristic amplitude 
of the differential rotation (cf. eq. (3.3) below), we have a differential rotation amplitude 
of Av ~ 3 • 10"* cm/s at the top of the tachocline. This value is clearly also roughly the 
amplitude of the vertical velocity difference across the tachochne, so the characteristic 
vertical shear is 

5~At;/iJ~3-10-^s-^ (3.1) 

This yields a Richardson number Ri= N^y/S'^ ~ 10^. This enormous value shows that 
the vertical shear cannot directly drive turbulence in the tachocline. 

Buoyancy, however, cannot stabilize the horizontal shear. While linear stability analysis 
(Dziembowski & Kosovichev, 1987, Charbonneau et al., 1999) shows that the horizontal 
shear is marginally stable in the nonmagnetic case, nonlinear effects and magnetic fields 
are known to lead to instability (Garaud, 20016; Miesch, 2001, 2002). The motions driven 
by the horizontal shear instability are predominantly horizontal, and their spatial scale 
is 

Ih^Re, (3-2) 

while their velocity scale Vh is determined by the amplitude Av of the horizontal shear 
at the given depth: 

Vh'^Av = HQ  [6.6) 

Overturning turbulent motions in the vertical direction are impeded by the stable 
stratification, their scale being limited to lb. Owing to the low vertical diffusivity, however, 
the horizontal motions will be characterized by a limited vertical correlation length 

Ic ~ {lylh/vhf^^. (3.4) 

The random horizontal flows driven by the shear will then be limited to thin sheets of 
thickness Ic, the motion in neighbouring sheets being independent. This will give rise to 
random vertical shear between neighbouring sheets, of amplitude 

S2 ~ vh/lc ~ (vlMh)^/^ (3.5) 

This secondary vertical shear is much stronger than the primary (mean) vertical shear, 
the corresponding Richardson number being Ri2 = gAVulh/Hpv^. Substituting here the 
characteristic values of the parameters, we find that Ri2 < 0.25, i.e. the secondary shear 
is unstable, if 

vl .„-4UfefCGS] 
'^ < ^cr = TTTfT- = 10        L   1 (3.6) 

4/feiV|v 2Mm ''    ^ 
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In the mid-tachocline this value is i^cr ~ 10®cm^/s, much higher than the molecular 
value, so we expect that the secondary shear is strongly unstable. 

What is the characteristic ampUtude of the turbulent motions driven by the secondary 
shear instabiUty? In principle, this could be derived from a K-e model (or, more, gener- 
ally, from a Reynolds stress model —cf. Mansour, Kim & Moin, 1999). Assuming plane 
parallel geometry for simplicity, the relevant equations are of the general form 

Here, the non-local fluxes or third order moments (TOMs) are 

FK = ^ (3.9) 

F, = v;€i (3.10) 

e; being the local dissipation rate, while e is the mean dissipation. The production terms 
are usually modelled as 

PK = ^Si (3.11) 

Pe = CP-^PK (3.12) 

while, assuming an ideal gas and the Boussinesq approximation p'/p = —T'/T (prime 
denotes fluctuations), the dissipation/sink terms read 

DK = e + gv,T' (3.13) 

De = Cm^ + CD2 ^9^ (3.14) 

(The first terms on the r.h.s. represent viscous dissipation, while the second terms corre- 
spond to gravity wave emission. Note that in a subadiabatic environment VzT' > 0, i.e. 
downmoving fluid parcels are hotter than average.) 

Performing a dimensional analysis on these equations we find that the diflFusive timescale, 
corresponding to the non-local terms, is tPjv k, (P/va ~ 10^° s, while the timescale as- 
sociated with the shear production term is KIvS^ ~ NBV/S^ ~ N^vht^l^l, ~ 10~^i/ < 
10^ s. This implies that the transport terms can be neglected in the K-e equations. Under 
such conditions the equations have no stationary solution, as the values of the constants 
Cp,CjDi and CD2 are different in general. The intensity of turbulence will then keep 
increasing until the turbulent diffusivity reaches the critical value !/„, when further shear 
production is switched off. 

We thus conclude that the secondary vertical shear InstabiHty can be expected to 
drive overturning turbulence to the level i/ = v„ on a short timescale. The turbulence 
generated by this mechanism may then be crudely represented by the vertical diffusivity 
value given by eq. (3.6). 

4. Tachocline model 
We now proceed to develop a simple one-dimensional model for the solar tachocline, 

assuming that the secondary shear instability discussed in the previous section is the 
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only source of turbulence in the tachocline region. Our computational domain will be 
restricted to the top of the radiative interior, below rbcz- 

Prom figure 2 it is apparent that the convective zone is characterized by extremely 
high turbulent diffusivities. Due to the Coriolis force, the Reynolds stress tensor also 
has significant nondiagonal components in the convective envelope. These components 
imply an angular momentum transport which is thought to be the main driver of solar 
differential rotation. Based on the discussion of the previous section we expect that the 
ampUtude of turbulence in the tachocline is much lower than in the CZ. Thus, from 
the point of view of tachocUne modelling, it is not unrealistic to regard the latitudinal 
differential rotation at r = rbcz as a given boundary condition imposed at the top of the 
region of interest. This is tantamount to assuming that differential rotation is driven by 
a highly effective mechanism in the convective zone which is not seriously influenced by 
the processes in the tachocline. 

As the layer studied is thin, we also adopt a plane parallel representation for it, with 
constant density. (The effects of density stratification are only implicitly talcen into ac- 
count by its role in determining the turbulent viscosity, eq. (3.6).) 

Thus, we regard the following model problem. Consider a plane parallel layer of incom- 
pressible fluid of density p, where the viscosity v and the magnetic diffusivity 77 depend 
on z only. At z = 0 where z is the vertical coordinate (corresponding to depth in the 
solar application we have in mind) a periodic horizontal shearing flow is imposed in the 
y direction: 

Vyo = VQ cos(fcx) 

(so that X will correspond to heliographic latitude, while y to the longitude). We assume 
a two-dimensional flow pattern {d/dy = 0) and Vx = Vz = 0 (no "meridional flow"). An 
oscillatory horizontal "poloidal" field is is present in the x direction, given by 

1 dA 
(47rp)V2 dz 

(in Alfvenic units). The "toroidal" (i.e. y) component A of the vector potential obeys 
the corresponding component of the integral of the induction equation, which in our case 
simplifies to a diffusion equation: 

^ = -^ (v-) (4.2) dt      dz V'dz) ^    ' 

The upper boundary condition A — Ao aX z = 0 fixes the poloidal field ampUtude. 
The evolution of the azimuthal components of the velocity and the magnetic field is 

described by the corresponding components of the equations of motion and induction, re- 
spectively. Introducing v = Vy and using Alfven speed units also for the toroidal magnetic 
field 

b = ByiAnp)-'/\ (4.3) 

these can be written as 

- = V,cosi.t)- + -[.-j (4.4) 

db     ,,      , ^.dv      d ( db\ ,, _, 
- = V,cosi.t)- + -(,-^ (4.5) 

where we have taken into account that, owing to the thinness of the tachocline, the 

y^ = _i_^ (4.1) 
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vertical derivatives dominate the diffusive terms. As the imposed poloidal field Vp is 
independent of x, Fourier transforming (4.4) and (4.5) in terms of x yields the same 
equations for the Fourier amplitudes v and b, except that d/dx is substituted by ik: 

- = ikbVpCosiut) + -[u-') (4.6) 

ikvVj,cos{u;t) + -^\^rj—j (4.7) 

(Hats are omitted to simpUfy notation.) For a rough estimate, we write nb/P for the 
l.h.s. of (4.7), then substitute the resulting expression of b into (4.6), take the real part, 
and omit the factor cos^(a;t) in the first term on the r.h.s.: 

db 

dt 

The equations to solve are thus (4.1), (4.2) and (4.8), with the turbulent diffusivities 
u = r] = Vm + i^cT given by equation (3.6) with the identification Vh = v. Vm is a minimal 
difFusivity value ("molecular diflFusivity"). 

The simplified form of the first term in equation (4.8) will not allow a correct reproduc- 
tion of the periodic part of the time dependence. The important point is, however, that 
this sink term, representing the reduction of horizontal shear by Maxwell stresses, has 
the right ampUtude and the correct scaling with Vp, P, v, and k, so it may be expected 
to reproduce well the cycle-averaged flow amplitude as a function of z, which is our main 
interest here. Indeed, solving om: equations for the case of constant diffusivities u £ind 
T], the results are in a remarkably good agreement with the fully consistent solutions in 
spherical geometry, presented in Forgdcs-Dajka & Petrovay (2002). 

The equations were solved numerically by a finite difference scheme second-order ac- 
curate in time. All quantities were set to zero at the lower boundary, situated at ZQ = 60 
or 30 Mm below r^cz, while the boundary conditions applied at top (z = 0) were 
u = uo = 3 • 10'* cm/s and different prescribed values for AQ. AS equation (3.6) is singular 
at z = 0,v was set to a high finite value i/^ax here. For Um we used the value lO'^cm^/s. 
This is much higher than the actual molecular diffusivities in the tachocline, but using 
a realistic value would lead to forbiddingly long integration times. Similarly, a too high 
value for i^max would lead to very short timesteps, also increasing the computing time to 
unaffordable values. Test runs with varying values of i/max and v^, however, show that 
these choices do not significantly distort the results. 

Starting from an arbitrary initial state, the system was allowed to evolve until very 
nearly periodic behaviour sets in (in about 10^ years, depending on the value of i>m), then 
average quantities for one 11-year half-cycle were computed and plotted as functions of 
depth (Figs. 3 and 4). 

5. Discussion 

In the case with a very weak magnetic field (left-hand column in figure 3), it is straight- 
forward to show that equation (4.8) with v given by (3.6) admits the analytic solution 

. = .ol-(-j , (5.1) 
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FIGURE 3. Horizontal differential rotation amplitude v = Vh, as defined in eq. (3.3) (top row), 
vertical turbulent diffusivity u (middle row), and poloidal magnetic field in Alfvenic units (bottom 
row), averaged over a solar half-cycle, as functions of depth below the convective zone, for a very 
low (left-hand column) and a mediirai (right-hand column) value of the field strength imposed at 
the top. Note that by coincidence, in the solar tachocline the field strength in gauss is roughly 
equal to the corresponding Alfven speed in cm/s. 
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FIGURE 4. Same as figure 3 for two higher field strength values. 

confirmed by the numerical calculations. This essentially means that in this case the 
shear penetrates as far down into the radiative interior as the placement of the lower 
boundary condition allows. The weak magnetic field itself only penetrates down to the 
skin depth given by equation (1.1), as expected. It is worth noting that the poloidal field 
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shows a non-monotonic behaviour with depth in all cases, reaching its maximum at some 
finite z value. This is due to the variable diffusivity: the horizontal field lines tend to 
"pile up" where the diffusivity is significantly reduced. 

Prom the right-hand column of figure 4 we can see that a poloidal magnetic field of 
a few hundred gauss (peak strength 500 G) can confine the tachocHne to a thickness of 
barely 4 Mm. This field strength is quite realistic: the total poloidal flux in the tachocline 
in this case is comparable to the fiux through the solar surface, as required. Nevertheless, 
the resulting thin tachocHne seems to be at odds with the results of Basu & Antia (2001), 
and is also hard to reconcile with the gradual depletion of lithium in the atmospheres of 
Sun-like stars during their lifetimes. Lithium is destroyed by nuclear reactions in layers 
below z ~ 40 Mm only, so a mixing characterized by a diffusivity of at least lO^cm^/s 
must be present as far down as that depth. While our prescription v^ = 10''' cm^/s does 
not allow a firm statement on this issue, the very sharp cutoff of the u-cmrve in the figures 
under discussion does not seem to indicate that any significant level of turbulence could 
be maintained at such great depths. 

One might think that an intermediate field strength might lead to a somewhat thicker 
tachocline. This is, however, not the case: an inspection of the full series of results in our 
figures clearly shows that a weaker field simply results in an "aborted tachocUne", i.e. 
the horizontal shear is first reduced by a factor depending on the field strength in a thin 
layer of a few Mm, but below that layer, as the magnetic field is damped by the skin 
effect, it follows the field-free solution (5.1), with a lower ampUtude. It remains to be 
seen, whether such a two-tiered u-profile can yield an equal or better fit to helioseismic 
data than the more conventional profiles, used e.g. by Basu & Antia (2001). 

One obvious shortcoming of the present models is their simplified treatment of the time 
development and of the geometry. The development of more realistic, axially symmetric 
spherical models emplo3dng the viscosity formula (3.6) is in progress. 
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Numerical simulation of 2D compressible 
heat-driven convection 

By   K. V. Parchevsky f 

1. Introduction 
We study the properties of heat-driven compressible turbulent convection. Two prob- 

lems were considered. The first concerns an industrial application: numerical simulation 
of the sedimentation of a polydisperse suspension in a convectively unstable medivun 
using a perfect gas equation of state. It is shown that convection acts as a size filter, 
separating particles into settled and suspended fractions with respect to particle radius. 
Heat driven convection can thus be used for separation of suspensions with a cut-off 
particle radius depending on the temperature difference only. 

The second problem concerns the large scale numerical simulation of compressible con- 
vection in the solar convection zone. Here the 2D compressible hydrodynamic equations 
were solved by an expUcit MacCormack scheme. An equation of state including real-gas 
effects (the OPAL equation of state) was used. Large dynamical structures were observed 
in the simulation which can be identified with solar supergranulation. A power spectrum 
of g-mode solar oscillations, excited by turbulent convection, was also obtained. 

Convection plays an important role in many fields of applied physics as well as in 
industry. The first part of this work is devoted to studying sedimentation of a polydis- 
perse suspension in a convectively unstable medium. Many technological processes use 
sedimentation for size separation of the particles in suspension. Thus, the settling behav- 
ior of polydisperse suspensions is a matter of great importance. Furthermore, very often 
the particles are setthng in a non-static medium. In industrial applications unwelcome 
motions of the medium can sometimes be reduced, but in many cases the motion is sig- 
nificant and must be taken into account. This motion may have a preferred direction, as 
in a pipe flow; in other cases there is no preferred direction, as in the case of thermal 
convection. Since, if we do not make special efforts to stabilize the temperatmre, convec- 
tion arises almost everywhere, knowledge of convective influences on the sedimentation 
process would be extremely important. 

The second part of this work is a 2D numerical simulation of large scale compressible 
convection in the solar convection zone. Convection is one of two main mechanisms of 
energy transport in the Sun, the other being radiation. The dynamics of the convection 
zone determines such global phenomena as differential rotation, the solar dynamo, exci- 
tation of 5-min. solar oscillations, granulation, and supergranulation. On the surface of 
the Sun convection appears as the granulation network. Using local correlation tracking 
methods one can map the horizontal velocities. Supergranules can be seen on such a 
map; without such processing the supergranulation pattern is smoothed by the move- 
ments of individual granules. The aim of this research is to simulate solar convection in a 
spatial region containing many granules in order to study granule evolution in time and 
to deduce the supergranulation pattern using the movements of separate granules. Our 
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simulations were designed to answer the following important question in solar physics: 
Is supergranulation a surface phenomenon, or it is caused by the deep subphotospheric 
structure of the second helium ionization zone? In order to include the effects of helium 
ionization, the OPAL equation-of-state tables were used to calculate the thermodynamic 
state. 

2. Governing hydrodynamic equations 
Two dimensional viscous compressible convection is simulated by solution of the com- 

pressible Navier-Stokes equations. We write the equations in terms of dimensionless vari- 
ables 

. P 

u ■ 

X ao 

" T       — 
J -^        ^  rri   ? a la 

P 

Po Po 

To = 
Po 

Po-R' 

o _ 7Po 
ao = -— 

Po 

where R is the gas constant. Subscript 0 indicates that the values are those in a reference 
state, taken to be the state at the top boundary. 

Dimensionless parameters Re, Pr and Fr, given by the following expressions 

_ poapL      p _ M^      p2 - ^ 
IJ, K gL 

represent Reynolds, Prandtl, and squared Proude numbers respectively, where /z is the 
viscosity, K is the thermal conductivity, g is the gravitational acceleration, a is the speed 
of sound, and L is the characteristic size of the computational region. 

The equations to be solved are 

5/    X     9 
{fyV? + --Txx\ + Q-{ptJ-V - Txy) = 0 

U(E-{ Txx) - VTxy + Qx    + 

VIE-] Tyy)   - UTxy + Qy 

(2.1) 

dE    d_ 
dt '^ dx 

d_ -i- 
where Ty is the viscous stress tensor 

2 1   /„9u     dv\ _2 1   ( dv     du\ _       _   1   (du     dv\ 

The rate of heat transfer is written in accordance with Fourier's law 

1       ar    ^ 1      dT 
Qx = — Qy = -, RePr{'i-l)dx'    ^^        RePrh-l)dy 

In the case of an ideal gas, p ~ pT, the pressure p can be expressed in terms of the total 
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energy per volume unit E as follows 

ipuf + ifyv)^' 
^ = (^-1)(E. 

2p 

where 7 = Cp/cv is the adiabatic exponent, p is the density, and u and v are the x and 
y velocity components. In our solar convection simulation p is calculated from a real-gas 
equation of state through interpolation in the OPAL tables. 

At the Reynolds numbers characterizing the solar convection zone, the flow will be tur- 
bulent. A turbulent viscosity /xt and a turbulent thermal conductivity Kt are introduced 
to approximate the efltects of turbulence: 

where A is the mixing length and Prt is the turbulent Prandtl number {Prt = 0.9 for 
air). Since we want to account for subgrid turbulence, A represents a characteristic grid 
cell size, and we take A^ = Ax Ay. To add turbulence to the dimensionless equations 
(2.1) the following changes are made: 

J_      _1_     J_ 1 1 1 

1 />'/:\\2/Q\2 

where C = 0.2 is an empirical dimensionless constant. 
The governing equations are written in divergence form and can be expressed as a 

single vector equation: 

The vector of dependent variable q = (p, pu, pv, E)"^. An explicit MacCormack scheme 
is directly applied to Eq. (2.2) as foUows: 

Predictor step: 

qj.fc = q",fc - ;^(^i+i.fc ~ ^h^ ~ Ay ^^^'*=+^ ~ ^^•*^^ ~ ^*s^,fe 

nk- 0<j<Arx + l       f.n      0<j<N^               0<j<N^ 
0<k<Ny        '       ^■''^ ■   0<fe<iV„-t-l'      0<k<Ny 

Corrector step: 

q-r=- q^. + ^h - ^in^ - F;-U) - ^(Gl, - G* ,_,) - AtSl, 

p*   . o< j<N^-l       f,*   .   l<j<iVx-l         l<j<iV^-l 
k<Ny-l '       ^■•*= ■   0 < fc < iVj, - 1 '      l<k<Ny-l 

This scheme has second order accuracy in both space and time. 
Convection is driven by the temperature gradient between the top and bottom bound- 

aries. Dirichlet boundary conditions are applied at the top and bottom: 

Ttop = To = 27S.15K,    Utop = vtop = 0, 
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Tbottom = To + AT,      Ubottom = ''^bottom = 0 

To calculate the pressure and density on the top and bottom boundaries we use the 
following procedure. We have temperature, pressure, and density at the inner nodes of 
the computational domain. On the boundary we have a given fixed temperature and 
zero velocities as boundary conditions. Assuming that the temperature changes linearly 
across one cell, we can write the following system of equations for the bottom boundary 

dp         75 

dy        Ff 
p = pRT 

-'   ^^ ■'■bottom "" 
AT 
A/' 

where R = Pi/piTi is the local gas constant and AT = Tbottom — Ti is the temperature 
difference between the bottom and top of the cell. We assume that the gas is perfect 
locally, that is, that the gas constant is constant in the cell. This system of equations can 
be solved analjrtically for p: 

(Tbottom        AT\t^ 
'^'''[-Tr-f^) 

•-■'AT 

Similar conditions can be written for the top boundary. Lateral boundary conditions are 
taken to be periodic. 

As an initial condition we choose a hydrostatic state with a hnear temperature gradient 

Tiv) = 1 + AT(1 -y) = Tbottom - yAT 

Ky) = [l + AT(l-y)]-*r- 

p(y) = p{y)T{y) = [1 + AT(1 - y)Y^ 

where in our dimensionless variables Ttop = Ptop = Ptop = 1- To provide a "soft" start of 
the convection without shock waves we introduce a seed velocity field of small amplitude 
A: 

u{x,y) = As\n{2TTx) cos{'Ky) 
v{x,y) = — A cos(27rx) sin(7ry) 

A is chosen so that absolute seed velocities are 10^ times smaller than the final hydro- 
dynamic velocities. 

3. Simulation of sedimentation 

We choose air at standard conditions as the compressible viscous medium for hydro- 
dynamic simulation. A square computational region is used with side L = 10 m and 
consists of 50 x 50 nodes. Convection is driven by the temperature gradient between the 
top and bottom boundaries. The temperature of the top boundary is set to 0 degrees 
Celsius (^top = 273.15 K). The computational region is heated from the bottom. Cal- 
culations were carried out for two cases: AT = 20K and AT = 50 K. The suspension 
consists of 50,000 small cement particles {p = 2200 kg/m^). Particle radii are assumed to 
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be lognormally distributed 

2" 

q{r) = 7==exp 
ray/zTT 

1 /Inr-lnr 
'2 

(3.1) 

with the following parameters: f = 1, a = 1/2. Radii of the particles were chosen in 
such a way that the settling time of particles with the most probable radius from the 
height L = 10 m in a static medium is equal to 1 minute. Usually a suspension of small 
particles is made by breaking. It can be shown (Kolmogorov (1941)) that particles of 
such a suspension have a lognormal distribution of radii. When the hydrodynamic system 
reaches a stationary state the small particles of the suspension are randomly distributed 
in the computational region. We start the particle positions at random values y uniformly 
distributed on the interval 0 < y < 1. Rather then using the standard random number 
generators, which are almost always linear congruential generators and do not satisfy 
our requirements for random number generators, we used instead the procedure ran2() 
from Press et. al. (1992). It uses a combination of three random generators with an 
additional shuffle which breaks up serial correlations. To obtain a random value x with 
predefined normalized density distribution function q{x) from a uniformly distributed 
random number y the following nonlinear equation must be solved for x 

f 
Jo 

q{m ^ 

The velocities and positions of the suspension particles are calculated simultaneously 
with the solution of the hydrodynamic equations (2.1). The particle velocity has two 
components: (i) a constant settUng rate 

_2A^   2 
'^settling — Q y^ 

which depends on the particle radius r, gravitational acceleration g, and medium param- 
eters, and (ii) the hydrodynamic velocity of the motion of the medium vhydro = (w,u). 
The total weight P{t) of settled matter is recorded during the numerical experiment. 
Settled particles are excluded from further calculations. 

The numerical simulation provides both a sedimentation curve P{t) (the total weight of 
settled matter versus time) and also information about the radii of settled and suspended 
particles. To obtain the particle sizes of these two fractions we have to calculate the 
particle radius distribution function. It can be obtained from the sedimentation curve, 
for settling without convection, by solution of the following integral equation of the first 
kind 

* = 1-P(.),    r- = J^ (3.2) 

This is an ill-posed inverse problem, and we are forced to use special regularizing algo- 
rithms to solve it. We used the Tikhonov regularization method (Tikhonov & Arsenin 
(1979), Tikhonov et. al. (1990)). Details of this method for the reconstruction of a particle 
radius distribution function can be seen in Parchevsky (2000a) and Parchevsky (2001). 
This approach is based on calculation of the first derivative from the empirical cumulative 
distribution function Fe{x) (Parchevsky (2000b)) and can be described as follows. The 
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Reconstructed distribution 
Initial distribution 

FIGURE 1. Reconstruction of particle radius distribution from the sedimentation curve in the 
case of a static medium. Time and radius are given in normalized units. 

probability density distribution and cumulative distribution are related by the formula 

q{^)d^ = Fe{x) (3.3) 

To obtain q{x) we have to substitute an empirical normalized cumulative distribution 

Fe{x) -- 
0, X < Xi 
jf,     Xi<X<Xi+i 
1, X > XTV 

calculated from the experimental sample (xi, 0:2,..., XM), in the right hand side Eq. (3.3) 
and then solve the integral equation. 

4. Numerical simulation of solar convection 

We carried out 2D simulations of solar compressible convection in a rectangular re- 
gion 47.95 Mm x 7.99 Mm with a mesh of 600 x 100 nodes. The density ratio was 
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Pbottom/ptop = 1800. The full system of hydrodynamic equations was integrated by an 
explicit MacCormack scheme. The total simulation time equals 9.317 days of solar time 
(775000 iterations). After a transient period of 265000 iterations, the temperature, ve- 
locity, and density were stored every 104 seconds. A movie of the temperature map as a 
function of time was produced from this data. 

For the numerical simulation of solar convection we used the same code as for the 
sedimentation simulation except for the equation of state. The simulation does not include 
radiative transport, but employs the realistic OPAL equation of state, which is moire 
important to include than radiation for our purposes. 

Since chemical composition in the convection zone is uniform we use the OPAL ta- 
bles for fixed chemical composition X and Z (hydrogen and heavy element abundance 
respectively). In the simulated hydrodynamic equations we use p and E (mass density 
and total energy density) as dependent variables. The OPAL tables are constructed to 
use p and T as input parameters. To speed up the interpolation process the OPAL ta- 
bles were inverted with respect to T and internal energy density e and reinterpolated on 
logarithmically uniform p and e grids. Cubic interpolation was used for this procedure. 
This eliminates the need for searching in the tables. 

The velocity of the fluid in the superadiabatic zone (immediately below the photo- 
sphere) is sufficiently high that we have to use a fully compressible code. The computa- 
tional domain is chosen so that the horizontal size is comparable to the supergranule size 
and the vertical size to the density scale height. The grid is chosen to be sufficiently fine 
for good spatial resolution. 

5. Results and discussion 

1. Sedimentation. 
Our computational procedure consists of three steps: (i) numerical simulation of the 

convection until the system reaches a statistically stationary state, (ii) calculation of 
the sedimentation curve, (iii) reconstruction of the particle radius distribution firom the 
sedimentation curve and firom the samples of particle radii of both settled and suspended 
fractions. We simulated sedimentation of an identical particle distribution in a static 
medium as well, results of which are shown in Fig. 1. The dashed line in Fig. lb represents 
the initial particle radius distribution (3.1), and the soUd line represents the particle 
radius distribution reconstructed firom the sedimentation curve shown in Fig. la obtained 
by solution of Eq. (3.2). One can see a good agreement of initial and reconstructed 
distributions. 

Convective motions of the medium lead to the following effects. The fine dispersed 
fraction of the suspension remains suspended much longer than without convection, and 
some particles with sufficiently small radii never settle at all. The mass of the suspended 
firaction depends on the average convective velocity of the medium, which in turn de- 
pends on the temperature difference between the top and bottom boundaries. A greater 
temperatmre difference (and convective velocity), leads to a greater mass of suspended 
matter. The results of our numerical simulation of sedimentation in the presence of com- 
pressible convection are shown in Fig. 2. For comparison we show restilts of sedimentation 
in a static medium in the same figure. The curves were calculated for two temperature 
differences between the top and bottom boundaries: AT = 20K and AT = 50 K. Time 
is given in normalized units. The asymptotes are calculated by extrapolating the curve 
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FIGURE 2. Sedimentation curves showing the mass fraction of settled matter versus time in 
the presence of 2D compressible convection. Asymptotes show the mass fraction of suspended 
particles which will never settle. For comparison the sedimentation curve of the same suspension 
in a static medium is also shown. 

P(l/t) to the y axis, at which the ordinate of the intersection point is taken as the 
as3Tnptotic value. 

The distribution of particle radii in the settled and suspended fractions is a matter of 
great interest. Normally, experiments provide only a sedimentation curve. In numerical 
simulation the radii of settled particles are available as well, so we have samples of radii 
of settled and suspended particles for every moment of time. The problem of reconstruc- 
tion of the particle radius distribution is reduced to the problem of reconstruction of the 
probability density function from a sample of finite size, and we can use the approach 
discussed above. Results are shown in Fig. 3. Dashed lines represent the particle radius 
distribution in the suspended and settled fractions. These curves were obtained from the 
samples of particle radii. Thick solid lines represent the initial particle radius distribution. 
If this were a laboratory experiment, only a sedimentation curve (as in Fig. 2) would be 
available, and the particle radius distribution curve would have to be constructed from it. 
If we reconstruct the particle radius distribution from the sedimentation curve, it is clear 
that we shall not obtain the correct radius distribution because convection distorts the 
result of radius reconstruction. Thin solid lines in Fig. 3 represent pzurticle radius distri- 
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FIGURE 3. Numerical results of reconstruction of the paxticle radius distribution function of 
suspended and settled fractions. 

butions obtained from the sedimentation curve by solution of integral equation (3.2). One 
can see a gap for small radii, because these particles remain suspended and do not settle. 
This is detected as a lack of particles with small radii. Thus, convection acts as a size filter 
which separates particles by radius. The average (and most probable) particle radius of 
the suspended and settled firactions depends on the temperature difference between the 
top and bottom boundaries. A separation technology based on the simultaneous action 
of sedimentation and convection would have a cut-off particle radius controlled by the 
temperature difference between the top and bottom boundaries. 

2. Solar convection. 
Results of the numerical simulation of solar convection are shown in Fig. 4. Color 

denotes a temperature difference between the medium and a reference model with a linear 
temperature profile. Blue denotes regions with temperatures smaller than the reference 
model, and red denotes regions with temperature higher than the reference model. Arrows 
show the direction and ampUtude of the fluid motion. The ratio of horizontal to vertical 
domain length is 6:1. 

A characteristic feature of solar convection is a fast cooling of solar matter in the 
subsurface layer and the resulting formation of downdrafts. These are cool compact 



276 K. V. Parchevsky 

structures descending with high velocity (10.43 ±0.05 km/s) ajid penetrating deep inside 
quieter regions. Such downdrafts form the boundaries of separate granules. Hot matter 
rises in the center of the granules at comparatively low speed (5.27 ± 0.02km/s). The 
whole pattern is shifting continuously. Representative granule lifetimes are 10-15 min. 

To study granule motion we plot a so-called time-spatial diagram. We choose a hori- 
zontal slice of the computational region at a fixed depth and plot its evolution with time. 
Time-spatial diagrams for temperature and velocity components at a depth of 0.56 Mm 
are shown in Fig. 5. Characteristic feather-like structures are formed due to the hori- 
zontal movement of downdrafts. The deep blue color of these feather-like structures on 
the temperature plot indicates their low temperature. Corresponding blue structures on 
the vertical velocity map show that the matter is descending. On the total velocity map 
these regions are red, indicating above average velocity. This indicates that in general 
the cold matter is descending faster then the hot matter is rising. All left branches of 
the feather-like structures on the horizontal velocity map are red, meaning horizontal 
movement to the right, and all right branches are blue, meaning horizontal movement to 
the left. All branches have nearly the same slope, indicating that they move horizontally 
with the same velocity. Horizontal movement of downdrafts is caused by advection of the 
small-scale granulation pattern by the slower large-scale motion of rising hot matter near 
the surface. 

Observations show the existence of large-scale structures on the surface — meso- and 
super-granulation. These structures are not seen directly since the velocities are low and 
the pattern is clouded by higher-velocity small-scale granule motions. Supergranulation 
can be seen only on the horizontal velocity maps of granules or on the time-spatial 
diagrams. Such large-scale structures arise natiurally in our numerical simulations. Fig. 
6 shows a large-scale time-spatial diagram where structures with a characteristic size of 
15-20 Mm and a Hfetime of 50-60 hours are clearly seen. 

Highly turbulent subsurface convection excites acoustic and gravitational waves. To 
find standing wave patterns in our model and determine their dispersion relation (wave- 
length versus frequency) we plot 2D Fourier transforms of a large-scale time-spatial di- 
agram similar to the one shown in Fig. 6, but computed for a depth of 6.234 Mm. The 
result is shown in Fig. 7 where the so-called k — u) diagram is presented. Inverse wave- 
length X~^ in Mm~^ is along the horizontal axis and frequency i/ in mHz is along the 
vertical axis. This figure presents a power spectrum of g-modes excited by turbulent con- 
vection. One can clearly see three ridges similar those that seen in the power spectrum 
of 5-min solar oscillations. A similar k — u) diagram plotted for a depth of 0.56 Mm does 
not show ridges, just a larger total acoustic power. This may be due to an insufficient 
length of simulated time and high noise due to motions associated with granulation. 
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FIGURE 6. Large-scale time-spatial diagram for the temperature at a depth of 0.56 Mm. 
Large-scale structures identified with the supergranules are clearly seen. 
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FIGURE 7. Power spectrum of g-modes excited by turbulent convection. 



OQI 
Center jor Turbulence Research ^°^ 
Annual Research Briefs 200S 

Numerical simulation of magnetoconvection in a 
stellar envelope 

By S. D. Ustyugov AND A. N. Andrianov f 

1. Introduction 
One of the main problems in the physics of the Sun is the interaction between con- 

vection and magnetic fields. Convective motions in stellar envelopes span a substantial 
radial distance from the convectively unstable region into the adjacent stable zones and 
can distort the magnetic field into concentrated flux sheets and tubes in which the mag- 
netic pressure is comparable to the gas pressure (see Hurlburt & Toomre (1988)). On the 
other hand, magnetic fields can be sufficiently strong to suppress convection on granu- 
lar and supergranular scales. The dynamics of such couplings is strongly nonhnear, and 
the flow spans many scale heights in the vertical direction and weakens the stable ther- 
mal stratification. Studies of convection in the presence of magnetic fields have already 
shown effects arising firom compressibiHty, revealing distinctive asymmetries between up- 
ward and downward flows. Convection penetrates into the underlying stable layers as 
downward-directed plumes (see Hurlburt et.al. (1986)). Here we consider compressible 
convection in three spatial dimensions in the presence of an externally imposed magnetic 
field. We study penetrative convection within relatively simple configurations consisting 
of two layers with well-posed boundary conditions. We include all diffusive processes and 
do not model the unresolved scales. 

2. Initial model and equations 

We shall consider penetrative convection in a compressible stellar envelope in the pres- 
ence of an imposed magnetic field. We assume that this envelope experiences uniform 
gravitational acceleration directed downward, and possesses constant thermal conductiv- 
ity, a constant magnetic diffusivity, and a constant shear viscosity. 

The stratification consists of an unstable layer bounded below by a stable polytrope. 
This configuration mimics the lower part of the solar convection zone and the upper 
radiative zone. The initial distribution of temperature, density, and pressure are expressed 
as 

m„+l 

for the unstable (a = 1) and stable (a = 2) layers. Here the polytropic indices nia are 

given by rria + 1 = gKa/RFr , where R is the gas constant, Ka is the coefficient of 
thermal conductivity, and FT is the total energy flux. Convective instability occurs when 
TUa <mc, where rric, the critical polytropic index, depends on the ratio of specific heats 
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7. For perfect a monoatomic gas (7 = 5/3), rric = 3/2. We take mi = 1 in the unstable 
layer and m2 = 3 in the stable layer. 

We have solved the equations of three-dimensional, fully compressible nonlinear mag- 
netoconvection. We use cartesian coordinates x = xi,y = X2,z = X3, where the positive 
2-axis points downwards. The equations of motion are as follows: conservation of mass. 

9p       ^   /     ^ 0, 

conservation of momentum. 

(2.2) 

dfyui       d __ + __ 

conservation of energy, 

kj \P+ -^BkBk j + puiUj - Tij - BiBj - pgSis = 0, (2.3) 

dpE      d 
dt   '^'dxi 

and the induction equation. 

(2.4) 

dBj   _d_ 
dt "*" dxi 

These are augmented by the equation of state for a perfect gas, 

0. (2.5) 

P = RpT, 

and expressions for the total energy per unit mass. 

E: 
1 IBiBi 

^ e+7;'^iUi-9x3 + 7: • 
I ^   p 

and the viscous stress tensor. 

(dui     duj     2     dui\ 

(2.6) 

(2.7) 

(2.8) 

Here p, T, P, and e are density, temperature, pressure, and specific internal energy, 
and Bi denotes components of the magnetic field. 

We write the equations in dimensionless form and take our unit of length to be the 
depth of the unstable layer d. The time unit d/(Rdfii) is related to the sound travel 
time across the unstable layer, where (3i is the initial temperature gradient within the 
unstable layer. The magnetic field is scaled by B, the value of the initially uniform vertical 
magnetic field. 

The evolution of the system depends on some physical and geometrical parameters. 
We define the computational box to extend in a horizontal plane from x = y = 0 to 
X = y = A, where A is the aspect ratio of the unstable layer, and vertically firom z = Zi 
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to z = 23. The depth of the unstable layer is unity in our units. The density contrast X2 
is the ratio of the density at the bottom of the unstable layer {z = 2-2) to that at the top: 

X2 = 4^ (2-9) 

The Prandtl number, which gives the ratio of viscous to thermal diflFusivity, is defined 

as 
a = ^ (2.10) 

K 

The degree of instability in the unstable layer is given by the Rayleigh number 

Ra = (mi + 1) (m, - mi) (m, + 1)'' a^^X^z''^^-^, (2.11) 

where A is the ratio of the sound speed to the thermal diffusion time and CTI is the Prandtl 

number in the unstable layer. Since Ra depends on vertical position in the unstable layer, 
we evaluate it at the center, taking 

^a = i2a(^l + ^). (2.12) 

as a nominal Rayleigh number. 

The strength of the imposed magnetic field and its effect on convective stability can 
be measured by the Chandrasekhar number 

Q^B-"- (2.13) 

The magnetic Prandtl number (the ratio of magnetic to thermal diffusivity) is defined 
as 

C = -npCplK (2.14) 

3. Numerical method 

For the numerical simulation we have used an expUcit TVD method, second order ac- 
curate in space with the time advance using a three-step Runge-Kutta scheme (see Yee 
et.al. (1990), Shu (1989)). Our algorithm uses equations in conservative form for advec- 
tion, wave propagation, and diffusion processes. The 3-D compressible time-dependent 
MHD equation with source term can be written as 

The dependent variable U is vector of conserved variables, and F, G, H are vectors of 

flux in the three space directions. Let 

Ut = L{U)ij,k, (3.2) 
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be the semi-discrete form of (3.1) at point (i,j, fc), where L is the spatial discretization 

operator 

■^'.j.fc = —^ {^i+i/2 - Fi-1/2) - ^ (Gj+1/2 - Gj-1/2) 

-^ iHk+1/2 - Hk-1/2) + Si,j,k, 

The numerical flux, for example in the x direction, is defined as 

(3.3) 

Fi+1/2 = \ {Fi+i + Fi + Pi+i/2$i+i/2) • (3.4) 

The last term ^1+1/2^1+1/2 is a nonlinear dissipation, and the quantity Pt+1/2 is the 

right eigenvector matrix dF/dU using, for example. Roe's approximate average state. 

The components ^'+1/2 of vector #1+1/2 can be written as 

<^Uv2 = 2^(°Ui/2)(5l+i + 5i) - V'(ai+i/2 + 7.'+i/2)"!+i/2. (3-5) 

7i+i/2 = 2^(ai+i/2)(5l+i-5!)/ai+i/2   if   "I+1/2 ^ 0. (3-6) 

71+1/2 = 0      if   al+i/2=0. (3.7) 

The a'+i/2)' = li-"i7, are the characteristic speeds of dF/dU evaluated at some 
symmetric average of U, and f/j+i. The function ip is an entropy correction to | a^j ,2 I- 

The a'^j/j ^^e elements of iJT^^j,3(^^1+1 — Ui). 

The Umiter function g[ can be expressed as 

gl = minmod(2a^_i/2,2aJ+i/2. 5("i-1/2 + "■Ui/2))- (3-8) 

For the thermal conductivity we have applied an explicit multistage numerical scheme. 
This scheme is absolutely stable and is described in detail by Zhukov et.al. (1993). The 
numerical scheme has been tested widely and used successfully in earlier work (see Ustyu- 
gov & Andrianov (2002)). We have carried out computations in a cube with 128 mesh 
points in each direction on 256 processors of the parallel machine with cluster architec- 
ture MBC lOOOM. The computer program was parallelized using the NORMA system 
(see Andrianov et.al. (2001)). The Norma program was then compiled using Fortran and 
the MPI library. A typical simulation requires on this cluster 50 hours to advance the 
solution well past its start-up transient. 

4. Boundary and Initial conditions 

We impose periodic boundary conditions with period A for all variables in x and y. 
On the upper and lower surfaces we use stress-free boundary conditions: 

B:, = By = dBJdz = u^ = du^/dz = duy/dz = 0, (4.1) 
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i.e., vertical velocities, together with the horizontal components of both the viscous and 

magnetic stresses, vanish at the upper and lower surfaces. The temperature is held fixed 
on the upper surface, and its vertical derivative is imposed on the lower. These conditions 
require 

T = Ti at z = zi, (4.2) 

dT/dz = I/K2 at z = Z3, (4.3) 

We introduce a small-ampUtude velocity perturbation over several wavenumbers within 
the unstable layer. The main parameters are fixed at the commonly used values of 

7 = 5/3, a = 1, C = 0.25, K = 0.05, Q = 144 (4.4) 

5. Results 

We study the effects of compressibility and magnetic fields on the penetration of con- 
vection into the region of stable stratification that lies below a stellar convection zone. 
Our results show that penetrative convection exhibits a distinct asymmetry between up- 
flow and downflow: the downward flow is concentrated into strong localized plumes which 
deeply penetrate into the lower stable zones and involve large positive density fluctua- 
tions (Figure. 1). CompressibiUty leads to significant pressure fluctuations and results in 
enhanced buoyancy-driving in regions of downflow. The upward flows span significantly 
wider regions and are distinctly weaker than downflows but not negligible. 

Convection tends to sweep the initially uniform vertical magnetic field into concen- 
trated magnetic flux tubes and sheets with significant magnetic pressiure (see also Weiss 
et.al. (1996)). The motion in downdrafts in the stable region are considerably less vigor- 
ous in the regions of magnetic sheets (Figure 2). Buoyancy and the Lorentz force retard 
downward flow, and magnetic pressure produces partial evacuation of matter which en- 
hances buoyancy-braking in fliix sheets (Figure 3). 

In the upper unstable region, variations of velocity are much weaker. Velocity magni- 
tudes indicate slowly modulated convection. The cellular flows display prominent narrow 
regions with downward flows surrounded by broader regions of upflow. The magnetic 
fields concentrate into flux tubes and sheets also, but the motion in downdrafts in this 
region is slower than in the stable layers. There are large variations of magnetic field in- 
tensity between regions with fiux sheets and those with upward flow. In the penetrative 
region these variations are weaker and the magnetic field is concentrated mainly in flux 
tubes. (Figure 4). 

6. Conclusions 

In this report we have studied formation and development of penetrative convection in 
stellar envelopes in the presence of imposed magnetic flelds. We have revealed a complex, 
time-varying flow field with compressible convection interacting with the magnetic field 
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FIGURE 1. Velocity fields and levels of the vertical component of velocity (denoted by color). 

FIGURE 2. Distribution levels of the vertical component of velocity. 
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FIGURE 3. Distribution levels of the vertical component of magnetic field. 

in an unstable layer bounded below by stably a stratified poljrtrope. On one side, convec- 
tion sweeps the magnetic field into fiux tubes and sheets, and on the other side magnetic 
pressure regulates the velocity of flow in downdrafts. In the future we will explore magne- 
toconvection for other initial parameters: aspect ratio, strength of magnetic field, Prandtl 
number, etc. We also plan to include a real-gas equation of state and opacity relations 
in our computer program. 
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Vortex dynamics and angular momentum 
transport in accretion disks 

By H. Lin, J. A. Barranco f AND P. S. Marcus ^ 

1. Introduction 
One of the prominent open problems in astrophysics is the mass and angular momen- 

tum transport in protoplanetary (accretion) disks. A typical disk is a few hundred AU 
(astronomical unit, lAU = 1.5 x lO^^cm) in size. It is mainly composed of hydrogen and 
hehum gas, and the thickness-to-radius ratio (aspect ratio) is usually ~ 0.1 and increases 
slowly with radius (a flared disk). Originating from the collapse of a rotating spheri- 
cal cloud under the gravitational pull of its central star (see, e.g. Cassen & Moosman 
(1981), Terebey, Shu & Cassen (1984)), the disk has an azimuthal velocity field that can 
be described, provided being pressureless and steady, by the formtila F^(r) = y/GM/r 
(Keplerian velocity; here we have adopted a cylindrical coordinate system {r,^,z), z is 
the axis of rotation, G is the constant of gravitation, and the central star of mass M can 
be treated as a point of gravitation at the origin for dynamics at sufficiently large radii). 
This velocity profile is simply given by the balance of gravitational and centrifugal force, 
which are the two dominant forces in the disk. 

A central issue of the disk dynamics is how mass and angular momentum are radially 
transported. Mass accretion is supported, even though not directly confirmed, by infrared 
observation. However, as gas particles travel toward the star, they have to give up or 
transport outward their angular momentum. Because the only external force acting on 
the disk is the gravitation of the central star, which is no source of external torque, this 
transport shall only occur between parts of the disk by internal interactions. It is this 
mechanism that remains unknown and defines the scope of this research. 

2. The averaged equation for angular momentum transport 

To illustrate the problem we give a simple yet revealing analysis. Because the char- 
acteristic Rejmolds number of the disk is extremely high (around 10^'*), we can safely 
ignore viscosity for large scale dynamics and apply Euler's equation for the momentum 
as 

^ = --Vp-V$, (2.1) 

where $ is the gravitational potential of the central star, and the equation is described 
in an inertia frame. To look at the evolution of the angular momentum, we combine the 
azimuthal momentum equation with the continuity equation, and multiply the resulting 
equation by r to yield 

dpv^r     1 dpy^Vrr"^     dpvlr     dpy^v^r ^    dp .    , 
dt        r      dr d<i> dz d<t>' ^ ' ' 

t Department of Astronomy, University of California, Berkeley 
I Department of Mechanical Engineering, University of California, Berkeley 
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Note that pv^r is the angular momentum, and the equation is now in conservative form. 
Next we define an integral operation as 

/+00    /•25r 

/     • rd<t>dz. (2.3) 
■oo   Jo 

Under this operation equation (2.2) becomes simply 

d{pv<i,r) _|_ d{pv4,Vrr) ^ ^ 
dt dr ' 

In the integrations we have already made use of the periodicity in (f>, and the assumption 
that Vz vanishes at 2; = ±00. Further integrating equation (2.4) in the radial direction 
yields 

d r^ 
— j    {pv^r)AT = -{fyv4,Vrr)\lJ;\. (2.5) 

Not surprisingly, equation (2.5) reasserts angular momentum conservation in the inte- 
gral form, and for an outward (or zero) angular momentum transport at a given radial 
location, it requires that 

{fw^Vrr) > 0. (2.6) 

The inequality (2.6) constrains the type of flow we can have on top of the Keplerian 
field. To see this let us decompose the velocity field into the sum of the base Keplerian 
flow, and deviations from it: 

V4, - Vk{r) + V4,,   Vr=Vr, (2.7) 

where Vfc(r) = s/GM/r, and v^ is not used in the analysis here. We also define the rate 
of accretion as 

m = - {pivr), (2.8) 

which is the rate of mass flow across certain radius r, and a positive m means inward 
mass flow and accretion. Substituting (2.7, 2.8) into equation (2.6) yields 

-Vkm+{pv^Vr)>0. (2.9) 

Equation (2.9) gives important guidance. First, for accretion (rn > 0), the correlation 
(pv^Vr) should be positive. Second, the accretion rate suggested by observation (~ —10~^ 
to —10"'^ solar mass per year) provides a constraint on the magnitude of the deviations 
through the relation (2.9), namely, 

• {pv^Vr) > Vkih. (2.10) 

This means the flow has to transport enough angular momentum out to cancel that 
carried in by the accretion flow. 

The next question is: what mechanism can generate a flow, with the required mag- 
nitude, sign of correlation, and most importantly, that is self-sustaining. This is the 
motivation of this work. The immediate candidate is a self-sustaining turbulence, pos- 
sibly originating from a hydrodynamic instability. (Remember that the characteristic 
Reynolds number is on the order of 10^^.) This has become the pursuit of many works in 
the past decade. Nonetheless, there has not been much success in this search of turbulent 
flow (or any other kind of chaotic, or simply convective flow) in accretion disks, and we 
shall discuss this matter in the last section. While not ruUng out other possibilities, our 
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proposal in this work is that, because vortices are known to be efficient agents for trans- 
porting angular momentum, and because they are known to be ubiquitous in flows with 
diflFerential rotation, we look for vortices in the accretion disks as a possible candidate of 
the desired flow. This we will discuss in the next section. 

3. Vortex dynamics in rotating shear flow 

Coherent vortices exist in both terrestrial and extraterrestrial flows. Prominent exam- 
ples are the Great Red Spot on Jupiter, and the Couette-Taylor vortices which result 
from a instability of Couette flow between rotating cylinders. In this section we discuss 
their relevance to angular momentum transport, and the protoplanetary disks. 

Vortices transport angular momentum in various ways. In case of the Couette-Taylor 
vortices, they transport angular momentum outward (toward the outer cylinder) by a 
positive correlation (v^Vr), similar to what we have discussed in the previous section. 
However, the vortices themselves are stationary swirls and they do not migrate. 

An alternative way is more interesting, and less discussed in the literature: vortices 
can move in space, and convect angular momentum as they stir the flow. Certainly in 
this case there exists a non-trivial correlation {v^Vr) as well. 

A very straightforward analysis on vortex migration is given by Schecter & Dubin 
(1999). In this analysis, they derived from linear theory not only the direction, but also 
the speed of migration of point vortices driven by a background vorticity gradient. As a 
result, even though the global angular momentum is conserved, the angular momentum 
field is convected. Before we start to discuss its relevance in the context of the disks, let 
us use an example in the context of geophysical flow to better illustrate the idea. We 
consider a channel (figure 1) in a rotating system with variable CorioUs force, known as 
the "/3— effiect". Suppose that we are in the quasi-geostrophic regime, and the governing 
equation is simply given by Ertel's conservation law (see, e.g. Pedlosky (1987)): 

where 

q^V-'^-^^+^y (3.2) 

is the potential vorticity, ^ is the stream function which satisfies u = —dip/dy, v = 
dip/dx, V^ip = ujz, and LR is the dimensionless Rossby deformation radius. For a flow at 
rest, the potential vorticity is a stationary yet non-constant field qb = /3j/. It is straight- 
forward to verify by integration by parts that 

dt JA 
qdxdy = 0, (3.3) 

and 

■ I qydxdy = 0, (3.4) 
dt 

where A is the section of the domain contained in the channel, and we have assumed 
periodicity in the x direction. Following Schecter & Dubin (1999), we define a g—weighted 
altitude as 
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FIGURE 1. A diagram for vortex migration. 

Now we may suppose that there is a constant-g patch located at the center of the flow 
field. Note that, a positive g-patch means a counter-clockwise circulation, a low pressure 
center, or a cyclone; on the other hand, a negative g-patch means a clockwise circulation, 
a high pressure center, or an anti-cyclone. We may decompose the g—weighted altitude 
into contributions from the background flow and the vortex patch, as 

(y) 
_ JA Qbydxdy + J^ Qyydxdy 

JA 9'^^dy 
= constant. (3.6) 

As the vortex mixes (convects) the flow around, and because g is a material field, the 
contribution of the background potential vorticity g to the weighted altitude (y) is re- 
duced. Consequently, an anti-cyclone (g < 0) has to move down, or an cyclone (g > 0) 
has to move up, to compensate for the change and conserve (y). (Note also that the area 
of the patch is preserved, from the divergence-free condition.) In these situations, the 
horizontal (x direction) symmetry of the vortex is clearly broken, and a non-trivial (uv) 
correlation has been created to exchange angular momentum. (A detailed calculation is 
theoretically difficult and best via numerical computation.) 

The above seemingly mysterious mathematical explanation becomes clear when we 
take a close look at the physical processes. Take for example the case of a cyclonic vortex 
g > 0. We follow a certain particle 1 (figure 1), which has originally a zero relative 
vorticity {w.r.t. the rotating system), and which is convected down on the left side of the 
vortex patch by the vortex. As the fiy contribution in the potential vorticity decreases 
along with y, the vorticity part (V^ - l/Lp)il> must undergo an increase to conserve the 
potential vorticity. Consequently, a small cyclonic vorticity is created. Similarly a particle 
2 traveling upward on the right side has its ;0—potential increased, and has to create a 
smaU anti-cyclonic vorticity as the compensation. The velocity field generated by these 
two small vorticities, which can be deduced from the Biot-Savart law, points upward on 
the patch. The same qualitative conclusion can be estabhshed for every point around the 
patch, the collective effect of the generated velocity field convects the cyclonic patch to 
a higher altitude, and an anti-cyclonic patch to a lower one. 

This physical interpretation applies not only to the above case, but also to more gen- 
eral situations involving coherent vortices. We can now look at its implications to our 
problem at hand, which, like other more general situations, does not have the clean cut 
conservation laws Hke those of (3.3) and (3.4), and which cannot be reduced to a single 
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variable of ip. Nonetheless, Ertel's theorem still holds (see also Pedlosky (1987)): 

^(^.V.)=0, (3.Z, 

where D/Dt is the material derivative, w is the absolute vorticity as observed in an inertia 
frame, and s is the specific entropy. To arrive at (3.7) only two assumption were used: i) 
the viscous force is ignorable, and ii) the dissipation time scale is much longer compared 
with the characteristic dynamics, such that entropy is material. We may further assume 
that the vertical vorticity Wj and entropy gradient ds/dz are the dominant ones compared 
with those in the azimuthal and radial directionsf; then Ertel's equation becomes 

The term l/{pds/dz) plays a similar role to that of /3y, or the background vorticity gra- 
dient in Schecter & Dubin (1999), with its (slower) variation in the radial direction. It 
is the purpose of this project to study the evolution of vortices under such a thermody- 
namic background. (The disk has also a background vorticity gradient associated with 
the Keplerian flow, which influence we shall study in the future.) Certainly, the problem 
is much more complicated because the flow is compressible (we have a gas disk), and i^f 
is a thermodynamically evolving field rather than a static one. Oiu: approach is outlined 
as the following. First, we study the general forms of long-Uved (coherent) vortices in the 
disk. The analytical part of this problem has been given in Barranco, Marcus & Umiurhan 
(2000), and shall not be repeated here. Second, we study the evolution of the such vor- 
tices under the influence of an entropy and density gradient in the radial direction, which 
are conjectured to exist in the disks. The vortices may or may not move radially, but 
the thermodynamic gradient can surely break their azimuthal symmetry and introduce 
velocity correlation. Last but not the least, we study the formation of these vortices, 
in part to verify the Rossby wave theory outlined in Lovelace et al. (1999). Currently, 
we are making progress on identifying various types of coherent vortices. We study the 
problem with numerical methods and our first results are presented in the next section. 

4. Numerical scheme and results 
ScaUngs in the protoplanetary disk is a complicated matter and was done in Barranco, 

Marcus & Umurhan (2000). Here we simply list the equations to solve, namely 

^ + (pv • V)v = -2pnk X (v - v) - Vp - pQi^zk, (4.1) 

V • (^v) = 0, (4.2) 

DT T — T pc^!dL = -pV.y+±—L, (4.3) 
Vt Trad 

p = pRT (4.4) 

t Note that ds/dz » dsd<l>, ds/dr is a standard assumption for optically thick disks. For the 
vorticity, as we will see in the next section, we will presumably set it to have a dominant compo- 
nent in the verticsJ direction. However, we do not exclude the situation that these assumptions 
may not be valid, and whose influence is best found through the simulations. 
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where the "bar-ed" quantities are the base state, which are exact solutions of the full 
Euler's equations, and the tilde quantities are the deviations from the base state, namely 
p = p — p, p = p — p. Also k is the unit vector in the z direction, R is the gas constant 
used in the equation of state, and Q, is the local angular velocity, i.e. that of the rotating 
frame these equations are described in. 

The base state is determined judiciously by our choice of the thermodynamic back- 
ground of the disk. For the current work, we will always choose a background that is 
stably stratified, that is to say, 

dz " dz \pj 
> 0. (4.5) 

The simplest way is to set the background flow to be isothermal, i.e. f = To = constant. 
Then from the equation of state p = pRT and hydrostatic balance in the vertical direc- 
tion, one can easily obtain that 

p = p<,(r)exp^-2^j, (4.6) 

and the pressure base state is simply pRTg. In the above equation pdr) is an arbitrary 
function of r whose form is determined from other physical argument {e.g. the well known 
"minimum-mass solar nebula" assumption proposed by Hayashi (1981)), and the scale 
height follows the standard definition Ho = Cs/Q. Clearly the corresponding entropy 
field satisfies the requirement of stable stratification, and the density has the favorable 
exponentially decaying form for the assumption (to be made later) of the finite thickness 
of the disk. For the base state velocity, we assume that v is simply the Keplerian shear 
in a rotating frame, i. e. 

where y is the local radial coordinate. 
The energy equation (4.3) simply manifests conservation of entropy Ds/Dt = 0, plus 

a small correctiondue to radiation. The radiation is nedvely modeled as the temperature 
perturbation T-T decaying on a time scale of Trad, which itself is exponentially decaying 
in z, i.e. there is more radiation toward the top and bottom layer of the disk, following an 
optically thick assumption. This modeling of radiation is certainly an over-simplification. 
However, because we are requiring that the thermodynamics does not deviate much from 
adiabatic process, the radiation time scale Trad is set to be very large and its effect is 
only detectable for very long runsf. 

We solve equation (4.1-4.3) numerically with a parallel, pseudo-spectral (nonlinear 
terms calculated in physical space) code. The code is doubly periodic in the vertical and 
azimuthal direction, and Chebyshev in the radial direction. We use a time-spUtting algo- 
rithm, with the leap-frog method for advection. The code is not dealiased, and equation 
(4.2) is satisfied through a r-method. We would Uke to mention that the periodicity in 
z is artificial, which means we are stacking identical disks on top of each other. However, 
as the density of the disk p is decaying exponentially with 2, we presume that the inter- 
action of the disks via the low density gas on the interfaces does not have a significant 
influence on the disk proper. 

t As a matter of fact, we assume Trod ~ 10,000 years in the middle plane at 1 AU, and 
Trad < year near "top" or "bottom" of the disk; however at those places the gas has very low 
density and the dynamical influence is presumably small. 
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As a side note, the immediate advantage of solving this set of equations is that the 
pressure operator becomes elUptical via the anelastic assumption (4.2), and is solved 
through a Helmholtz solver. Nonetheless when needed, we can implement a semi-implicit 
scheme and solve a more broadly applicable set of equations in the future. 

Our first results are presented in the following. 

4.1. Coherent columnar vortices 

In this set of numerical experiments we explore semi-two-dimensional vortices. For sim- 
plicity we specify the thermodynamic background to be isothermal, and we assume that 
there is no radial variation in p and p, i.e. po = constant. The radial variation wiU 
only be needed when we come to the study of vortex evolution under such a background 
gradient. 

For each height z, we specify identically an elliptical vortex patch satisfying the Moore- 
Saffman formula (Saffman (1992)) for two-dimensional, steady vortices embedded in shear 
flow, namely 

^ = A^. (4.8) 
a A — 1 

Here Wz is the constant vorticity patch superimposed on the shear flow, u = ^fl is the 
shear rate of the background, and A = h/a is the ratio of the semi-axis of the elliptical 
patch, with h in the radial direction and a in the azimuthal direction. For a vorticity 
patch with a strength equal to that of the shear flow, this formula gives an aspect radio 
of roughly 0.5. For the vertical direction, we make the pressure and density to initially 
satisfy the hydrostatic balance. 

The result agrees with those previously found in the two-dimensional, quasi-geostrophic 
cases, e.g. in Marcus (1993). We found that prograde vortices with a strength on the order 
of the background shear (or higher) maintain their coherence very well (figure 2); whereas 
adverse vortices or prograde vortices that are not strong enough are destroyed by the 
shear (figure 3). Owing to the setup of the stable stratification, the vertical velocity 
remained to be very small (as we put disturbances in the form of white noise to test 
the robustness of the vortex) in both cases. We are currently ruiming tests to confirm 
that the vertical motion follows closely to that of the hnear Brunt-Vaisala oscillation. 
These cases showed that even away fi:om the quasi-geostrophic limit a shear flow can weU 
support coherent vortices. 

4.2. Merger of columnar vortices 

Merging of vortices to form a larger one is speculated to be one of the possible mechanisms 
for the formation of coherent vortices. We demonstrate this by putting two columnar vor- 
tices in different positions of the shear flow, and let them approach each other. As we 
initially specify the shear flow to be positive for the upper half domain (in the radial di- 
rection) and negative in the lower half domain, the differential motion brings the vortices 
together, and they eventually merge to form a larger one that is of the same strength 
(in vorticity), but approximately double the area of the patch. The resulting vortex is 
again stable and coherent. This result shows that the merging of smaller vortices to form 
larger ones is a viable mechanism to form large, coherent vortices. 

4.3.  Three-dimensional vortices 

Even though we have obtained stable forms of coherent columnar vortices, they are simply 
the quasi-two-dimensional analogs of two-dimensional vortices. In the environment of 
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FIGURE 2. A typical stable prograde vortex. In this figure x is the local azimuthal coordinate, 
y is the local radial coordinate, and the contour of the vertical vorticity u)z at the middle plane 
^ = 0 is plotted. The dark eUiptical patch at the center of the graph is our prograde vortex 
(corresponding to a vorticity "hole"). The boundary of the vortex patch oscillates with small 
amplitude (which is only best seen through animation), whereas the patch itself is stable. The 
computational resolution is 128 x 128 x 32. 

FIGURE 3. The same plot as in figure 1, but with an adverse vortex (the white patch in the 
first graph) instead of a prograde one. The sequence in time goes from left to right, and top to 
bottom; the total length of the run is about 1.6 of a turn-around time (one turn-around time 
equals one orbital period, or a year, in this case), and the fi-ames are evenly divided in time. 
Clearly the vortex patch is stretched by the shear on the scale of tum-around time. 
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FIGURE 4. An exemplary vortex merger. As usual x and y (xHo) represent the azimuthal and 
radial direction, respectively. The dark patches are the prograde vorticity at the middle plane 
z = 0. Sequence in time goes from left to right, and top to bottom. The length of the run is 3 
years. 

the accretion disk with an order-unity Rossby number, it is of great interest to find 
"real" three-dimensional, coherent vortices. Three-dimensional vortices are much less 
understood than their two-dimensional counterparts, and much more difficult to study. 
Their significance lies also in their relation to planetesimal formation (see Barranco & 
Marcus (2000)). 

Our first aim is to find pancake-like vortices, a cartoon of which can be found in figure 
3 of Barranco & Marcus (2000). The character of this type of vortex is the circulation 
in the vertical direction within the vortex, which, we speculate, should be close to a 
thermal wind balance, i.e. the balance of the rotational effects with baroclinicity in the 
vertical (r — z) plane. We specify the initial condition to be the same as the colunmar 
vortices in previous subsections, but reduce the strength of vorticity exponentially with 
height. Unfortunately, after observing similar vertical circulation pattern (as that in the 
cartoon) for a short duration (about a half of the turn-arounds time), the vertical cells 
begin to break into smaller ones, and eventually the vortex reduce in strength and decays. 
A possible reason can be that the background is too-strongly stratified, that a vertical 
circulation cannot self-sustain. Our only conclusion so far is that, the vertical setup of 
the background flow has a significant influence on the vortex dynamics. We will explore 
different combinations of thermodynamic background and vorticity initialization in the 
future. 



298 H. Lin, J. A. Barranco & P. S. Marcus 

5. Discussions and futiu'e work 

In this report we have described the problem of angular momentum transport in the 
accretion disks, as well as our approach and preliminary results to this problem. Much 
is needed to be done in the future, following the plan we have have outhned at the 
end of section 3. First we need to obtain a steady form of a three-dimensional, stable 
vortex structure. Next, as the problem that is directly associated with the purpose of this 
project, we need to study the evolution of such vortices under the influence of a radial 
thermodjTiamic background, the purpose of which would be to break the azimuthal 
symmetry of the flow and provide a non-trivial velocity correlation to transport angular 
momentum. 

Even though we have shown strong interest in vortex dynamics as a proposed mecha- 
nism for angular momentum transport, the possibility of the existence of turbulence (or, 
in general, other non-vortical flow) can never be ruled out. The Rayleigh stability crite- 
rionf can only be applied to the disk with much caution, because of complications in the 
disk (e.g. compressibility, stratification, baroclinicity, among others) that are not consid- 
ered in the linear instabiUty analysis. Furthermore, different boundary conditions easily 
modify the stability of a system. Nonetheless, the disk does have to satisfy some con- 
straints, like those proposed in equations (11) and (12) in Stone & Balbus (1996); these 
constraints emphasize the importance of eizimuthal structures (i.e. non-homogeneity in 
the azimuthal direction), without which the flow cannot be self-sustaining. In the future 
we will explore the possibility of turbulent flow in the disk; or, similar to the situation 
of the Great Red Spot on the Jupiter, that of vortices embedded in turbulent flow. Our 
special advantage would be that our numerical method resolves the full three-dimensional 
flow with vertical structures, rather than the vertical homogeneity that was assumed in 
Rayleigh analysis, and many other works. 
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Interaction between turbulent flow and free 
surfaces 

By  Y.-N. Young, F. E. Ham, M. Herrmann AND N. N. Mansour 

1. Motivation and objectives 
Fluids with interfaces axe ubiquitous in fields ranging from geophysics and engineering 

to applied physics and biology. In various setups, the interface instability has been studied 
by masters such as Faraday, Fermi, Lighthill, Miles, Rayleigh and Taylor, just to name a 
few. Interaction of turbulent flow with a fluid interface, however, is much less understood 
compared to the stability problem. This is due to the complexity of wave-turbulence 
interaction, and the wide dynamical range to be covered. A classic example is the wind 
over water problem in oceanography, where a wind (turbulent or laminar) blows over the 
sea surface. In a sohtary moment at the beach, one immediately sees that the dynamical 
range is at least four decades as large waves of length meters break into small droplets 
of millimeter sizes. 

The ampUfication of free-surface waves driven by a mean shear flow can be dominated 
by a critical layer instability, caused by the resonance between the surface waves and the 
wind (Miles 1957; Alexakis, Young & Rosner 2002a). Non-linear analysis can illuminate 
the initial amplification period (Alexakis, Young & Rosner 2002b), however, the breaking 
of growing waves and the ensuing mixing cannot be easily understood in this manner. 

Thus our motivation in this project is to carefully investigate the challenging problem of 
turbulence interaction with fluid interfaces. Specifically, we wiU develop and utilize tools 
and models to examine how the mixing of fluids and momentum proceed and partition 
among the different flxiids. The following interim objectives are purposed: 

• development of underlying numerical method for LES - based on the second-order 
Cartesian adaptive finite-volume method of Ham et al. (2002), 

• integration of free-surface methodology - based on the level set method, 
• sub-grid scale model implementation and development 

2. Mathematical formulation 
We treat the incompressible, immiscible two-fluid system as a single fluid with strong 

variations in density and viscosity in the neighborhood of the interface. The continuity 
and momentum equations for such a variable density flow can be written in conservative 
form as: 

where Ui is the fluid velocity, p the fluid density, p the pressure, ry the viscous stress 
tensor, gi the acceleration due to gravity, a the surface tension coefficient, K the local free 
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surface curvature, 5 the Dirac delta function evaluated based on d the normal distance 
to the surface, and rij the unit normal at the free surface. 

When the density can be written p = p{(f>) where (t>{xi,t) is a level set function that 
is evolved to describe the location of the interface, the application of chain rule to the 
continuity equation yields: 

For the case of constant density except in the neighborhood of the zero level set - 
e.g. p = p'^H {(f) + p~ (1 — H {(f>)) - then the solution of the continuity equation can be 
decomposed into the solution of the following: 

d(t> d<t)      „ 
(2.4) 

Eq. 2.4 is the standard evolution equation for the level set function, and eq. 2.5 is the 
incompressible continuity equation. 

In a similar way, the application of chain rule to the momentum equation allows the 
decomposition of the momentum equation into the solution of the level set equation, eq. 
2.4, and the solution of the following momentum equation: 

dui       duiUi dp      OTH 

Note that the level set formulation results in a system of governing equations that 
can no longer be written in conservative form. Thus, when the finite volume method is 
applied to this system, we cannot expect to achieve discrete conservation of mass {p) and 
momentum (pui) in the region of the interface. It is the hope of the level set formula- 
tion that these errors in conservation are mitigated by the more accurate tracking of the 
interface that is possible with the smoothly-varying level set function. Recent develop- 
ments to the level set method that improve its conservation properties - specifically the 
particle level set method of Enright, Fedkiw, Ferziger k Mitchell (2002) - will also be 
investigated and are described in a later section of this brief. 

3. Numerical Method 
The system described by eqs. 2.4 - 2.6 is commonly solved on a structured staggered 

grid using finite difference methods, where couphng between the velocity field and pres- 
sure occurs naturally. In the present work, we will develop a finite volume method suitable 
to solve the system on a collocated grid. This will allow the use of both Cartesian struc- 
tured grids with local refinement, and fully unstructured grids. The spatial arrangement 
of variables is shown in Figure 1. The arrows at the faces in the figure represent the 
location of the face-normal velocity, Uf. 

The following numerical method is proposed. First, the level set function is advanced 
in time by solving the following semi-impUcit second-order discretization of the level set 
equation: 
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Uf 

Ui,p,4> 

—»■ • 

—»- • 

(a) Cartesian grid with local refinement (b) Unstructured grid 

FIGURE 1. Spatial location of variables for collocated discretization. 

4>' ,n+l ■r 
At 

+ v^(jv?-\uj-')A,{\i,H\*: n+l = 0 (3.1) 

where Af is the face area. Note that the face-normal velocities, Uf, are used to advance 
the level set function. The required face values of the level set function, (^/, are inter- 
polated from the cell-centered <j) values using a second order ENO scheme (Sussman, 
Smereka and Osher 1994). 

At this point, the level set function is re-initialized to a signed distance function by 
solving the following equation to steady-state: 

^ + sgn{<l>){\W4>\-l) = 0. (3.2) 

In practice, only a few time steps are required, and the equation need only be solved in 
a band about the zero level set (Peng, Merriman, Osher, Zhao & Kang 1999). 

With the level set advanced, properties can be calculated based on the level set at the 
mid-point of the time interval: 

(3.3) 

(3.4) 

In the present investigation, we use a smoothed property variation in the region of the 
zero level set as described by Sussman, Smereka & Osher (1994). 

The momentum and continuity equations are then solved using a fractional-step method 
similar to that described in Kim Sz Choi (2000). Specific attention must be paid, how- 
ever, to the discrete form of force terms that have rapid spatial variation, specifically 
the surface tension forces added to the momentum equation in the neighborhood of the 
interface. A fractional step discretization of the momentum equation proceeds as foUows. 

Advance the momentum equation to solve for CV-centered pseudo-velocities u" 
using: 
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(-l^n+l      „n\ ;:„ n-l/2 

where all other terms in the momentum equation have been incorporated into the right 
hand side term Ri, approximated at the midpoint of the current time step. 

Following Kim and Choi (2000), a second pseudo-velocity field denoted by a superscript 
* is then calculated: 

This starred velocity field is then interpolated to the faces: 

*"+! _ ...n+l''        A* I ill  ■"/ 1 

p  ■     Pf ■ J 
ur^=ur^^' - At [ 9,^ - ^ifeiT? ' (3-^) 

where () is a second-order interpolation operator that yields a face-normal component 
from two CV-centered vectors. The divergence of these face velocities is then used as the 
source term in a variable-coefficient Poisson equation for the pressure: 

ijE^r%=E^r"'^/- (3.8) 
With the Poisson equation solved, the face-normal and CV-centered velocity fields are 

corrected as follows, completing the time advancement: 

U,-^^ = Ur^-At^^ (3.9) 
Pf 

<^'-r"-A'^g""'' (3.10) 

Following this correction, the face-normal velocity components wiU exactly conserve 
mass. The CV-centered pressure gradient required in eq. 3.10 is reconstructed from the 
face-normal components using a second-order reconstruction operator. 

In the present work we use a face-area weighted average. At this point the time step is 
completed, and the algorithm would cycle back to eq. 3.1. 

A critical difference between the present formulation and the formulation of Kim and 
Choi is in the calculation of the starred face-normal velocities (eq. 3.7). Kim and Choi 
assume that: 

on+l/2      '^     n+1/2 " (^-l^) 
'' Pf 
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(a) eq. 3.12 assumed for surface tension (b) eq. 3.13 assumed for surface tension 

FIGURE 2. Comparison of calculated velocity field around a cylindrical drop for two different 
formulations of the surface tension forces. 

This is an 0{Ax^) approximation, seemingly consistent with the overall accuracy of the 
method, and significantly simplifies the calculation of the Poisson equation source term. 
In the present investigation, however, it was found that when surface tension forces were 
introduced in the region of the zero level set, this approximation could lead to large non- 
physical oscillations in the CV-centered velocity field. To solve this problem, the surface 
tension forces must be calculated at the faces, and then averaged to the CV centers, i.e.: 

(3.13) 
P       Pf 

With this calculation of the surface tension forces, we can no longer make the assump- 
tion of eq. 3.12, and the additional terms must be included in the calculation of U^ and 
thus in the Poisson equation source term. 

4. Results 
4.1. Surface tension formulation 

To illustrate the importance of a proper handling of the surface tension forces, figure 2 
compares the calculated velocity field around a cyfindrical drop with surface tension using 
the two different formulations. Figure 3 compares the normalized pressure and velocity 
along a horizontal line through the center of the drop for the same two calculations. 
Clearly the formulation that assumes eq. 3.13 is superior. Although the steady velocity 
field for this problem should be exactly zero, even with the new formulation we do 
observe eight small vortices arranged symmetrically around the perimeter of the drop. 
These "parasitic currents" have been observed by other investigators (Tryggvason et al. 
2001). For the improved face-based surface-tension formulation, the maximum induced 
velocity is on the order of O.OOlcr///, consistent with the observations of others using 
staggered structured codes. 
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FIGURE 3. Cylindrical drop computation: Comparison of a) calculated pressure and b) calculated 
CV-centered velocity through the horizontal centerUne of the drop: eq. 3.12 assumed for 
surface tension; eq. 3.13 assumed for surface tension. 

4.2. Adaptive mesh refinement and coarsening 

Because of the substantial variations in resolution requirement, some sort of local refine- 
ment capability is considered essential to the success of this investigation. In the present 
work, the adaptive Cartesian method of Ham et al. (2002) is being developed to solve 
the system described by eqs. 2.4 - 2.6. 

To illustrate the potential of the method, figure 4 shows the adapted mesh that results 
when the Rayleigh-Taylor instability is calculated with a simple isotropic adaptation 
criteria in the region of the zero level set. The development of a more optimal flow and 
level set adaptation criterion is an ongoing part of this investigation. 

5. The particle level set method 

As a compliment to the numerical development presented in the previous sections, the 
potential of the particle level set method of Enright, Fedkiw, Ferziger & Mitchell (2002) 
to improve the conservation properties in the region of the free surface is also being 
investigated. 

In the particle level set method, massless Lagrangian particles are placed in a band 
around the zero level set and used to correct the level set evolution. Initially, particles of 
the same signs as the level set function values are placed within this band. Each particle 
(with coordinate Xp) is advanced according to the local velocity 

djt 
~dt 

P — „/■•? u(Xp), (5.1) 

where u(xp) is the interpolated velocity at the particle position. 
As in Enright, Fedkiw, Ferziger & Mitchell (2002), each particle is given a sign (sp), a 

radius (rp), and an individual level set function <j)p defined as 
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FIGURE 4. 2D Rayleigh-Taylor instability: Calculated evolution of the mesh in the region of 
the free surface. 

(t>p{x) = Sp{rp - |x - Xpl). (5.2) 

The sign of eax;h particle is assigned once initially, and the radius of each paiticle is 
determined according to the algorithm in Enright, Fedkiw, Ferziger & Mitchell (2002). 
At each time step, errors made in the level set function leads to displacement of particles; 
some may end up on the wrong side relative to the zero level set. Explicitly, a particle is 
found to be on the wrong side if 

<t>{Xp) X sp < 0. (5.3) 

Once the particle is found to be on the wrong side, it will be defined as an escaped 
particle if the following condition is met 

-<j>(xp) X Sp> Tp. (5.4) 

Following the algorithm in Enright, Fedkiw, Ferziger & Mitchell (2002), only the es- 
caped particles contribute to correcting the level set. The correction is made by re- 
assigning the values of the level set (f> according to the following rules: for a given set of 
escaped positive particles (E"*") and a level set <f>, the maximvun of the level set values 
from all escaped positive particles (E+) is picked as the projected level set value ^''"(x) 

<;6+(x)=  max (0p(x),0+(x)) 
p m E+ 

(5.5) 

with ^■'■(x) first initialized with ^(x). 
Similarly for escaped negative particle, given a set of escaped negative particles {E~) 
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FIGURE 5. (a) Initial level set on a uniform grid of resolution 128x 128. Particles are also included, 
(b) After one revolution: with particle correction; without particle correction. 

and a level set 4>, the minimum of the level set values from all escaped negative particles 
is the projected level set value <^~(x) 

<t>  (x)=   min {(}>p{x),^ (x)) 
p m E- 

(5.6) 

with (/i  (x) first initialized with (^(x). The corrected level set value is then determined 
as the value that is closer to the interface 

6m = i '^+ifn<ir (5.7) 

To ensure that the level set remains as close to the boundary between positive and 
negative particles as possible, the particle correction is conducted after both the transport 
of the level set and the re-initialization. 

Results from the standard test of Zalesak's disk are shown in figm-e 5. After one 
revolution, the level set with particle correction still retains the sharp corners compared 
with the results without particle correction where the corners are severely smoothed and 
eroded. Such results are consistent with those presented in Enright, Fedkiw, Ferziger & 
Mitchell (2002) for equivalent numerical resolution. 

5.1. Additional geometrical information 

A potential improvement to the particle level set method is to incorporate more geomet- 
ric information into each particle. Prom differential geometry, the geometric properties 
such as the line element/surface element of the level set also evolve as the level set is 
transported. A simple idea then is to associate each particle with such geometric prop- 
erties of the level sets that the particles reside on. Specifically, at time t = 0, with each 
particle a line element vector 1 is defined as the derivative of the distance r on the curve 
parameterized by A 
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I.|, (5.8, 

where r is related to the fluid flow by 

^r = u(r,t). (5.9) 

It follows that the line element 1 satisfies the following equation 

ii = Wijlj, (5.10) 

where Wy = ff^- and the dot is the time derivative. Higher order derivatives are needed 

for computation of curvature. At t = 0, we define a as 

-I- <-" 
This leads to the following equations for each component of a 

di = Wijaj + Wijkljh, (5.12) 

where Wtjk = gf'gj. ■ Denoting the length of 1 as ^ = |1|, we can calculate the curvature 

of the level set associated with each particle as K = ^"^eyfenj/jOfc, where the Einstein 
summation is assumed for repeated indexes, Cijk is the delta function, and rij is the normal 
vector. With this additional information, we may modify how we correct the level set 
according to the escaped particles. For example, we may incorporate the normal vectors 
and the cvirvature into the particle level set function (^p. The simplest modification, just 
using the line element 1, is to write the particle level set function as 

^;(x) = 5p(rp-|np-(x-Xp)|), (5.13) 

where Up is the normal vector to the level set where the particle belongs. Figure 6 shows 
how (j)p (equation 5.2) compares with ej>'p for a positive particle {sp = 1). The dashed line 
is where (j>p = 0 and the sohd Une is where <t)'p = 0. 

Whenever a particle escapes and is used to correct the level set function, the shortest 
distance between the grid point and all the zero particle levels will be used to correct the 
value of the level set function. To test this idea, we advect a circular level set by a single 
vortex in two-dimensions. Inside a unit box, the mixing flow is described by the stream 
function 

^ = - sin^(7rx) sin^(7ry), (5.14) 
TT 

and the corresponding velocity 

u = -(sin(27ry) - sin(27ry) cos(27rx)),   v = -{-sin(27rx) + cos(27ry) sin(27ra;)).   (5.15) 
2 ^ 

The initial condition is a circle of radius 0.15 located at (0.5,0.75) (cf Enright, Fedkiw, 
Ferziger & Mitchell (2002)), and the numerical resolution is 128 x 128. 

The improvement is significant when two level sets move toward each other within 
distances less than two grid spacings. More small-scale structures are retained using <t>p 
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FIGURE 6. Particle level set (/>p and <^p for a positive particle inside a cell. 
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FIGURE 7. Advection of a circle by a single vortex, (a) The level set at t = 2.8. The solid line 
is using equation 5.12 for particle correction, and the dashed Une is based on equation 5.2. (b) 
Detail of the level sets with particles superimposed. 

for particle correction (solid line in fig. 7b) than the correction based on (j>p (dashed 
line in fig. 7b). Eventually the numerical limitation sets in and annihilation of level sets 
occurs for both simulations using (t>p or ^p. 

6. Future plans 

At the time of writing, the Cartesian adaptive code is undergoing a period of validation 
where a series of 2D and 3D free surface problems will be investigated, including bubble 
oscillation, interaction and breakup problems, and the 2D and 3D Rayleigh-Taylor in- 
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stability. In the context of this validation, a flow and level set based adaptation criterion 
similar to the interpolation error based criterion described in Ham et al. (2002) will be 
developed. Eventually it is planned to incorporate the particle level set into the Cartesian 
adaptive code, and compute the interaction between a turbulent boundary layer and free 
surface with overturning waves. 
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Simulation of flows over wavy rough boundaries 

By   A. Nakayama f AND K. Sakio X 

1. Motivation and objectives 
Numerical calculation of large-scale flows appearing in the natural environment almost 

always involves simplification of the boundary geometry It is not only impossible, but 
also meaningless, to represent all the details of the terrain with trees and vegetation, 
not to mention smaller objects like Uttle stones in simulating a wind field in a localized 
area, or irregular bank and bed forms of natural meandering rivers. Flows in rivers and 
oceans have, in addition, a complex boundary on the firee surface, whose shape is not just 
given but determined by the motion of water. The overall effects of small and random 
irregularities are accounted for as roughness, but larger undulations would have to be 
considered a part of the boundary shape. In fact the roughness and the boundary shape 
cannot be distinguished so easily. The numerical resolution of the flow field requires 
determination of what is to be considered roughness and what should be considered 
as the boundary shape. If the small-scale irregularities axe smoothed out, the motion 
associated with the details is lost. In the context of large-eddy simulation (LES), this 
will give rise to additional subgrid-scale stresses. It has been pointed out by Nikora et 
al. (2001) that the small details of irregularities of even the time-averaged flow near the 
rough bed of an open channel must be treated by spatial averaging, which also leads 
to an additional stress. In simulation of the atmospheric boundary layer over a forest 
canopy, the extra resistance due to the roughness of the canopy is added in the flow (e.g. 
Yamada (1982)). In an LES, it is found (Brown, Hobson & Wood (2001) and Chow & 
Street (2002)) that these additional stresses need to be distributed over a much larger 
area in order to obtain the correct logarithmic law for an atmospheric boundary layer. 

Various studies of numerical simulation of smooth-surface wall flows have indicated 
that proper representation of the near-wall flow is essential for accmrate reproduction of 
the main flow. Proper representation of the flow near rough and irregular boundaries can 
also be very important in computation of flows over rough surfaces. The main objectives 
of the present work is to study the effects of smoothing of the boundary on the large-eddy 
simulation as well as filtering of small-scale fluctuations of the flow, and to investigate 
modeling methods of the subgrid scale stresses and the boundary conditions when the 
boundary geometry is complex and irregular. We do this by conducting a direct simulation 
of model flow over a wavy boundary with distinct length scales. Small waves axe used to 
simulate the surface irregularities that large-eddy simulations may not be able to resolve. 
A large body of work on rough surface flows does not address the effects of smoothing 
boundary shapes and we look at the simulation results firom this point of view. Effects 
of smoothing the firee-surface waves have been pointed out by Hodges & Street (1999). 
A model for inviscid surface waves has been proposed by Dimas & Fialkowski (2000). 
Extension of the present line of work to moving wavy surfaces can be applied to free- 
surface fluctuations as well. 

t Division of Global Environment Development Science, Kobe University 
X Dept. Civil Engineering and Architecture, Kobe University 
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TABLE 1. Parameters for simulation calculation. 

Case        Grid cells      L^xLyxH   \      5     A'     8' Ren 

Case 1   192 X 128 X 96     3x2x1      1.0 0.05   -      - 
Case 2 384 X 128 X 96     3x2x1      1.0 0.05 0.2 0.02 

6760 
6760 

2. Results 

2.1. Direct simulation of flow over wavy rough surface 

In order to study the effects of small boundary irregularities, a direct numerical simulation 
of a model flow with a "simplified" complex boundary has been conducted. It is a flow over 
a wavy surface containing two modes of two-dimensional cosine waves with different wave 
lengths and amplitudes. The smaller waves simulate undulations or roughness that a LES 
computation cannot resolve but whose effects should be reflected in the resolved flow field. 
Therefore, additional computation is performed for the case without the smaller waves. 
Flows over wavy walls have been studied both experimentally (e.g.Hudson, Dykhno &: 
Hanratty (1996) and Gong, W., Taylor, P. A. & Doernbrack (1996)) and numerically 
(e.g.Krettenauer & Schumann (1992) and Maass & Schumann (1994)) as a case of rough 
surface itself. We repeat the simulation of this flow as a verification of our computation 
and as the basis for evaluating further effects of smaller waviness. It is the same as the 
flow in a channel with wavy surface computed by Maass & Schumann (1994), except the 
upper boundary in the present flow is a free-slip boundary approximating a free surface. 
A free surface flow over wavy bottom of much higher Reynolds number has also been 
simulated by Calhoun & Street (2001) using a LES method and the basic flows may be 
compared with these calculations. The present simulation results and the filtered fields 
of the simulated flows will provide basic data for examining the effects of the boundary 
irregularities. 

The computational domain, the definition of symbols and the computational grids for 
the two simulation cases are shown in Figure 1. One in every four of 192 x 128 x 96 grid 
hnes of Case 1 and 384 x 128 x 96 grid lines of Case 2 on the three bounding sm-faces are 
shown. The values of the parameters are shown in Table 1. The parameters for Case 1 
of the single-mode wavy surface are identical to those of Maass & Schumann (1994) and 
the ratio of the wave amphtude to the wave length is 0.05 with a maximum slope of 0.31. 
The present flow domain consists of three wavelengths compared with four in Maass 
& Schumann (1994). Case 2 is a flow over the same wavy surface with smaller waves 
superimposed. The wavelength A' and the amplitude S' of the smaller waves are one fifth 
and two fifths of the main waves, respectively. These are respectively approximately 150 
and 30 viscous units based on the average shear stress. The bulk Reynolds number ReH 
defined by the average velocity Um and the flow depth H is 6760 and is the same as 
Maass & Schumann (1994). 

The numerical method used in these simulations is the same as that explained in 
Yokojima & Nakayama (2001), which is essentially the same as the method of Zang, 
Street & Koseff (1994). It is a fractional step method formulated on the collocated grid 
arrangement in general curvilinear coordinates. For the present coirfiguration of the flow, 
one of the coordinates is taken to conform to the wavy surface on the bottom and the flat 
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FIGURE 1. Computational domain and grids (every foiir grid lines shown) : (a) Case 1; (b) 
Case 2. 

upper boundary and the second coordinate is taken so that it is close to orthogonal to the 
first as close as possible without much distortion in the main flow domain. Approximate 
orthogonality near the solid boundary is important to capture the motion accurately in 

this region. 
The boundary conditions are no-slip on the bottom wavy walls, free slip on the upper 

boundary and periodic in the streamwise and cross flow directions. In order to shorten the 
initial flow development time, the current calculation was first started with the result of 
our earUer DNS calculation of straight open-channel flow (Nakayama & Yokojima (2001)) 
as the initial flow over one period of the large waves. 

2.2. Mean flow and filtered mean flow 

The mean-flow properties of the simulated flows are shown in Figures 2 and 3. The flow 
configuration of present Case 1 is the same as those of Maass & Schumann (1994) and 
Calhoun & Street (2001). Partictilarly the Reynolds number of the present calculation 
is the same as that of Maass & Schumann (1994) and detailed comparisons are made 
in Figure 2. The only difference between these two calculations is that the boundary 
condition on the top. The present calculation, similar to Calhoun & Street (2001), does 
not have a boundary layer there. The two results are seen to be sufficiently close to each 
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FIGURE 2. Mean velocity profiles of Case 1 compared with calculation of Maass & Schumann 
(1994). — : present simulation, . + : Maass & Schumann (1994) 

other. Slightly lower velocity of the present calculation in the center region is due to the 
absence of the boundary layer on the upper boundary. 

Figures 3(a) and (b) show the the mean velocity vectors of the present two simulation 
cases in the lower half of the middle one third of the calculation region. The flow is 
separated in both cases and the dividing streamhnes are shown in dotted lines. These 
may roughly be thought of as the effective boundaries for the flow away from the bottom 
boundary. It is noted that the dividing streamline for Case 2 shows undulations that are 
of opposite phase to that of the boundary shape, and somewhat smoothed and shifted 
upward. 

A LES simulation of flows like that of present Case 2 that does not resolve the small 
waviness is not to reproduce the flow over the large waviness alone like that of Case 
1. Instead, one would like to obtain a flow that corresponds to the filtered flow field of 
Case 2. Figure 3(c) is the flow field obtained by filtering the flow of Case 2 with filter 
length equal to the wavelength of the small waves. The filter function is a rectangular 
top-hat of horizontal to vertical side ratio equal to the ratio of the wave length to the 
height. In the filtering process, the flow outside the actual flow domain is excluded by 
a conditioning function discriminating the flow region £ind outside; thus only velocities 
from within the flow domain contribute to the filtered result. This filtering method with 
a conditioning function may not be the best choice in actual LES simulations, due mainly 
to the non-commutativity with spatial differentiations, but its important consequences 
wiU be representative of possible filters to be used in a LES. The location (represented 
by the elevation) of the original boundary is also filtered in the same way and shown in 
a solid line. With the filter length chosen to be equal to the wave length of the small 
waves, the small-scale motions due to the small waves are removed. The recirculation 
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FIGURE 3. Mean velocity distributions of the simulated and filtered flows: (a) Case 1; (b) Case 
2; (c) Case 2 filtered with filter size A' x 2(5' ; (d) Case 2 filtered with filter size Xx2S. ■■■ : 
separation streamline 

region is smaller but the flow above the separated region retains similarity impljdng 
usefulness of a LES tjrpe simulation over such complex boundary. Figure 3(d) shows 
the result of filtering with scale equal to the wave length of the large waves. It is now 
almost uniform and may be thought a flow over flat rough surface. It is noted that the 
filtered velocity on the filtered boundary is not exactly equal to zero. Figures 4(a) and 
(b) are the semi-logarithmic plots of the velocity profiles of Figure 3(c) and (d) at four 
streamwise positions with the firiction velocity determined by filtering the wall stresses 
and the wall pressure in the direction parallel to the smoothed boundary. The solid line 
is the rough-surface boimdary layer profile with the equivalent roughness height taken 
to be equal to k = 2{S + 5'), the height from the bottom to the top of the boundary of 
Case 2. The roughness height Reynolds number fc+ = Ursk/v is 106, where UTS = y/rs/p 
is the firiction velocity determined from the filtered wall resistance which corresponds 
to the overall pressmre gradient and is 0.0127. It is seen that the results with the filter 
size A' X 25' vary considerably firom a fixed logarithmic profile but those with the large 
filter size are close to the well-known rough-surface profile, except a slight overshoot near 

/j/ = /(;+. The distribution of the filtered resistance Tg is shown in Figure 5. It is zu. 
distributed over distances firom the smoothed boundary comparable to the filter height 
and its variation is much larger than the average. 
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FIGURE 4. Semi-logarithmic plot of the filtered mean velocity distributions: (a) Case 2 with 
filter size A' x 5'; (b) Case 2 with filter size X x S. o -.x/X = 1.0; D :X/A = 1.25; A:x/A = 1.5; 
0:x/X = 1.75; —: rough surface log-law with roughness height equal to the total variation of the 
wavy wall 
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FIGURE 5. Distribution of the component of the filtered wall stresses in the direction tangent 
to the smoothed boundary. 

2.3. Instantaneous features of simulated flows 

Figure 6 shows a feature of the instantaneous flows in terms of the distributions of the 
secondary flow velocity vectors at five cross stream planes in the center one third of the 
flow. It is seen that the instantaneous flow structure of Case 1 shows quite strong and 
large structures extending into the middle of the channel. These are like the streamwise 
vortices seen by Calhoun k Street (2001) in a LES calculation at a much higher Reynolds 
number. In Case 2 with small boundary waviness, the scale of the fluctuations appears 
to be smaller and they do not extend as far into the channel main flow as Case 1. 
The disturbances due to the small waviness appear to destroy and break up many of 
the larger vortical structures. Although not shown, the filtered flow of Case 2 has even 
weaker structures. 

Figure 7 further shows the iso-surfaces of the second invariant of the instantaneous 
velocity gradient tensor. They are known to show the vortical structures more directly. 
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FIGURE 6. Secondary flow velocity vectors in the cross-stream planes in the center one third of 
the flow:(a) Case 1; (b) Case 2. 

The streamwise structures seen in Case 1 axe similar to those seen by Calhoun & Street 
(2001). Most of them originate from the ridges and extend over distances comparable to 
the wave length. In Case 2 the structures appear to be disturbed by the smaller waviness 
and are broken into smaller scale motions. 

2.4. Subgrid scale stresses and effects of boundary smoothing and flow filtering 

In order to gain an idea about the magnitudes and the distribution of the sub-grid stresses 
that one will have to deal with in a LES simulation of flows like that influenced by small 
waviness of the boundary, subgrid stresses are computed from the simulated flow field. In 
conventional LES, the effects of the subgrid scale motion are represented by the subgrid 
stress 

Tij = -UiUj + Ui Uj (2.1) 

where Ui is the instantaneous velocity vector, and the overbar indicates a spatial filtering. 
Sample distributions of component T13 at one instant of time ma,x — y plane are shown 
in Figure 8 in shaded contour plots. Here subscript 3 is used to mean the z-direction and 
is upward from the wavy bottom surface. Figures 8(a) and (b) are obtained by using the 
same filtering method used earher for the mean quantities so that the boundary of Case 
2 is smoothed at the same time. While these are only samples we see that the sub-grid 
stresses in Case 2 are of larger magnitude. High stress regions are seen downstream of the 
ridges of the main waves. Figiure 8(c) shows the sub-grid scale stresses when the filtering 
is performed only in the spanwise direction which is the direction of flow homogeneity. 
Filtering this way retains the small-scale variations and the boundary geometry is not 
smoothed. This is not what one models in a LES which does not resolve the small 
waviness, but is shown here for comparison. 

In order to further see the effects of boundary smoothing, we look at the difference 
of the two simulations on an instantaneous basis. The two simulations are statistically 
independent and the instantaneous difference does not necessarily represent the instan- 
taneous effects of the small waviness. Nonetheless it will show a possible picture of the 
effects and we have plotted one example of the difference distribution in a a; — 2: plane in 
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(a) 

(b) 

FIGURE 7. Iso-surface of second invariant of velocity gradient tensor: (a) Case 1; (b) Case 2. 

Figure 9. It shows that strong fluctuations with scales comparable to the small waves are 
seen in the near wall region, particularly downstream of the ridges of the main waves. 
What is important is that these pertiurbations burst up into the main part of the chan- 
nel. This bursting is the reason that the effects of roughness, if introduced as an external 
force must be input in regions much larger than the roughness height. 
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FIGURE 8. Instantaneous subgrid scale shear stress distribution: (a) Case 1; (b) Case 2 with 
filter A' X 5'; (c) Case 2 with spanwise filtering; (b) and (c) are at the same time and in the 
same plane. 

3. Considerations for LBS of flows over complex boundaries 
In a LES simulation of a flow in a complex domain that cannot be resolved by the 

computational grid, smoothing of the boundary must be done explicitly or implicitly. 
We interpret that the boundary is smoothed when the spatial filtering is applied to flow 
quantities. In order to help model this, we denote the filtered and smoothed velocity of 
the original velocity Uj by ul, and identify the motion lost by boundary smoothing by 6ui 
and fluctuation lost by the spatial filtering by u[. Ui cannot explicitly be given by a linear 
operation on Ui alone. This is a difficulty in formulating smoothing of the boundary, but 
we may write 

Ui = Ui + Ui + Sui, (3.1) 

An additional difiiculty is that there are differences in the domains on which these quan- 
tities are defined. Ui is defined in the original unsmoothed flow domain D, while Uj is 
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FIGURE 9. Difference between the instantaneotis velocity vectors in Case 1 and Case 2. 
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FIGURE 10. Subgrid scale shear stress of the difference velocity of Case 1 and Case 2. 

defined in the smoothed domain D and Sui can be defined in the intersection of these two 
domains. We interpret Eq(3.1) in the smoothed domain D by assuming some extrapolated 
flow Ui outside D. 

The equations for w, may then be obtained by filtering the original equations of motion 
and by replacing the boundary conditions with those on the smoothed boundary. The 
results will be the same as the usual LES equations 

dui     dui Uj 

dt        dxj 
1 dp     _d_ 
pdxi     dx ;(€-«) (3.2) 

and the boundary conditions are applied on the smoothed boundary B. The subgrid scale 
stress appearing in these equations is denoted by Ty- to emphasize that it includes the 
boundary smoothing effects and is given by 

Tij = — Ui Uj + Ui Uj — Ui Uj — Uj U^ — u'jU'j 
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- "ui 5uj -u]6ui- Suiu'j - Suju'i - Sui Suj. (3.3) 

The first half is the same as the usual Leonard, cross and Reynolds stress terms due 
to filtering and the terms in the next Une contain Sm. These may be considered the 
effects of smoothing of the boundary. There axe terms showing interactions between the 
filtering and smoothing and the stresses due to smoothing alone. 6ui is a quantity related 
to the smoothing of the boundary. If we define a measure of deviation of the smoothed 
boundary from the original position such as the mean square of the deviation, a model 
for the statistical quantities involving Sm may be constructed. We wiU examine some of 
these terms from the present direct simulation of a model flow. 

In order to know Suu additional equations will have to be solved. Since the difference 
velocity field we saw in the previous subsection can be thought of as one realization of 
5ui, we computed the stresses associated with it 

T]ij = -5ui6uj + SuiSuj. (3.4) 

The results are plotted in Figure 10. It shows that the magnitudes are shghtly smaller 
than the subgrid scale stresses due to filtering and distributed in a broader region. 

If usage of the instantaneous Sui is to be useful, we will need to be able to calculate 
it. One way of doing this is to assume a (fictitious) unfiltered velocity field Ui within 
the smoothed boundary, that is, Ui satisfies the Navier-Stokes equations in the smoothed 
domain. Then the equations for Sui may be obtained by taking the difference of the 
equations for Ui and Uj in the intersection region of D and D 

dSui     dujSuj     dujSuj     dSujSuj ^ _ 1 ^ _^ j,.^!^ (3.5) 
~m"^   dxj dxj dxj pdxi       dxjdxj 

where 6p is the difference in the pressures in the original flow and the smoothed flow. 
Since Sui is expected to be significant only near the region where the boundary is altered, 
this equation may be linearized in most of the smoothed flow. But it should be noted 
that Sui may not be of small scale and may not be negligible in regions away from the 
boundary. The boundary condition for 6ui may be applied on B and is Ui - Ui with some 
extrapolation for ttj. Even if it is not possible to solve for Sm, it should be possible to 
solve for its filtered values or the stress r]ij. 

4, Conclusions and futiire work 
A direct simulation of an idealized flow with wavy surfaces consisting of distinct length 

scales has been conducted. The results have been analyzed in view of how an LES sim- 
ulation that does not resolve the small details of the boundary shapes must be done. 
Using the filtering and boundary smoothing method considered in the present work, the 
siurface stresses on the original boundary are spread as external forces over the area cor- 
responding to the filter size and the filtered velocity field does not satisfy the original 
no-slip condition on the smoothed boundary. The filtered velocity profiles indicate some 
form of similarity, but the precise form still needs to be examined. In addition to the 
stresses due to the original sinrface stresses, motion removed by the boundary smoothing 
introduces additional stresses that extend into the region where there was no original 
soUd boundary. A possible method of modeling these stresses based on decomposition of 
the velocity field into the filtered field and the parts lost by the boundary smoothing and 
the filtering, has also been presented. The obvious step of future work is to complete the 
analysis of the simulation results. The averages should include, not only the conventional 
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averages but filter averages with alternative filtering and smoothing methods, and all 
quantities that arise in the filtering and smoothing process. Models for these terms and 
the boundary conditions must be constructed. Then one can do an actual LES calculation 
for the present flow with the appropriate models and evaluate the results. 

REFERENCES 

BROWN, A.R., HOBSON, J.M. &; WOOD, N. 2001 Large-eddy simulation of neutral 
turbulent flow over rough sinusoidal ridges. Boundary-Layer Meteorology 98, 411- 
441. 

CALHOUN, R.J. &; STREET, R.L. 2001 Turbulent flow over wavy surface: Neutral case 
J. GOP. Res. 106, 9277-9293. 

CHOW, F.K. & STREET, R.L. 2002 Modeling unresolved motions in LES of field-scale 
flows 15th symp. on Boundary Layers and Turbulence, American Meteorological 
Society, 432-435, Wageningen, The Netherlands. 

DiMAS, A. A., &: FlALKOWSKI, L.T. 2000 Large-Wave Simulation (LWS) of Free-Surface 
Flows Developing Weak Spilling Breaking Waves. J. Camp. Phys. 159, 172-196. 

GONG, W., TAYLOR, P. A. & DOERNBRACK 1996 Turbulent boundry-layer flow over 
fixed a^rodynamically rough two-dimensional sinusoidal waves. J. Fluid Mech. 312, 
1-37. 

HODGES, B. R. & STREET, R. L. 1999 On Simulation of Turbulent Nonlinear Free- 
Surface Flows. J. Camp. Phys. 151, 425-457. 

HUDSON, J. D., DYKHNO, L. & HANRATTY, T. J. 1996 Turbulence production in flow 
over a wavy wall. Experiments in Fluids 20, 257-265. 

KRETTENAUER, K., & SCHUMANN, U. 1992 Numerical Simulation of Turbulent Flow 
Over a Wavy Boundary. J. Fluid Mech. 237, 261-299. 

MAASS, C, & SCHUMANN, U. 1994 Numerical simulation of turbulent convection over 
wavy terrain. Direct and Large-Eddy Simulation J, ed. by RR. Voke, L. Kleiser and 
J.-R Chollet, 287-297, Kluwer Academic. 

NAKAYAMA, A. & YOKOJIMA, S. 2001 Direct numerical simulation of the fully developed 
open-channel flow at subcritical Froude numbers DNS/LES Progress and Challenges, 
Third AFOSR International Conferenc Arlington, Texas 2001, 569-576. 

NiKORA, v.. GORING, D., MCEWAN, L & GRIFFITHS, G. 2001 Spatially averaged 
open-channel flow over rough bed. J. Hydr. Engrg, ASCE 127, 123-133. 

YAM ADA, T. 1982 A numerical model study of turbulent airflow in and above forest 
canopy. J. Meteor. Soc. Japan 60, 439-454. 

YOKOJIMA, S. & NAKAYAMA, A. 2001 Development and verification of finite difference 
method based on collocated grid in generalized coordinate system for direct and 
large edy simulations. Annual J. Hydraulic Eng. JSCE 45, 565-570. 

ZANG, B. R., STREET, R. L.& KOSEFF, J. R. 1994 A non-stagared grid, fractional step 
method for time-dependent incompressible Navier-Stokes equations in curviHnear 
coordinates. J. Comp. Phys. 114, 18-33. 



325 Center for Turbulence Research 
Annual Research Briefs 2002 

Image-based computational modeling of blood 
flow in a porcine aorta bypass graft 

By   V. Favier AND C. A. Taylor f 

1. Motivation and objectives 
Even though pathological factors are known to characterize the development of vascu- 

lar diseases, mechanical factors play a major role in their localization and progression. 
For example, fluid mechanic factors contribute to the initiation of atherosclerosis: plaque 
formation is more likely to occur in recirculation areas, downstream of arterial bifurca- 
tions and bends. It has been observed that, beside mediating the generation of diseases, 
local hemodynamic parameters enhance their growth. In complex flow areas, low wall 
shear stresses and high residence time are thought to exacerbate the chemical processes 
of wall thickening and clotting (cell prohferation in the inner layer of the vessels, surface 
damage of the endotheUum cell layer at the interface of blood and the vessels, Dilley, Mc 
Geachie & Prendergast 1988; Gewertz et al. 1992). 

Understanding these phenomena is important not only in research on diseases but 
also in surgery planning and in the development of artificial devices. Obstruction and 
failure of a bypass-graft operation may occur if the chemical reactions for thrombosis 
are activated at the wound where the bypass is added, and can further be maintained 
because of the sensitivity of the human cardiovascular system to a foreign body and 
favorable local hemodynamics, like flow stasis. 

Numerous studies, both experimental and numerical, have focused on assessing these 
hypotheses and characterizing the level of importance of fluid quantities in the past few 
years. Nevertheless, how fluid mechanics and diseases interact remains unclear due to the 
variety of parameters reqmred to describe the full physics of blood flow. 

Non-invasive magnetic resonance imaging (MRI) and ultrasound techniques have been 
appUed to in vitro studies on simple geometries (pipes, branches,...) and have shown their 
abiUty to measure accurate velocities and characterize flow patterns (Botnar et al. 2000). 
Significant progress in those imaging tools now make it possible to visuaUze large areas 
of the cardiovascular tree, observe moving vessel walls and measure velocities in vivo. 

Numerical simulation is a very attractive tool to access fluid parameters that are diffi- 
cult to obtain experimentally (full velocity fields, shear stresses,...). Moreover, numerical 
techniques enable the investigation of the effect of geometric and flow-rate modifications 
in the studied model. Computations of blood flow in idealized models of the cardiovascu- 
lar system have been extensively studied. Perktold and colleagues examined blood flow in 
rigid and deformable models of carotid arteries (Perktold, Resch & Peter 1991; Perktold 
& Rappitsch 1995). Taylor et al. quantifled blood flow in an idealized model of the human 
abdominal aorta under resting and exercise conditions (Taylor, Hughes & Zarins 1998a; 
Taylor, Hughes & Zarins 1999). Others examined blood flow in models of the end-to-side 
anastomosis (downstream connection of the end of a bypass graft to side of a host artery, 
Milner et al. 1998; Taylor, Hughes & Zarins 1998b). 

t Stanford University, Mechanical Engineering &: Surgery 
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Velocity profile comparisons between in vitro experiments ajid computation of blood 
flow using the same geometry have been successful in idealized models and also more com- 
plex cases. Taylor, Hughes & Zarins (1996), Milner et al. (1998), Cebral k Lohner (2001) 
have extracted realistic models of vessels from volumetric MRI or computed tomography 
(CT) in order to reproduce the complex anatomy of a patient. 

Nevertheless, the combination of medical imaging techniques to extract geometric mod- 
els and numerical simulation in in vitro cases only enables one to study pulsatile blood 
flow with significant assumptions about inflow boundary conditions. Measuring physio- 
logical flow waveforms in vivo and using them as data input to the experiment or the 
simulation does not insure that the velocity profile is realistic. 

Ku et al. 2002 used a Dacron band to create a restriction (stenosis) in the descending 
thoracic aorta of pigs and then bypassed this stenosis with a Dacron graft. This aorto- 
aorto bypass graft was imaged using magnetic resonance angiography (MRA) and blood- 
flow velocity was measured in the aorta above the proximal connection of the graft to 
the aorta, using phase-contrast magnetic resonance imaging (PC-MRI). This flow velocity 
data was used to calculate the volumetric flow rate which in turn was used to prescribe 
fully-developed pulsatile flow boundary conditions (based on Womersley theory) at the 
inlet of the computational model. Computed flow rates in the bypass graft and native 
aorta compared favorably to the flow rates obtained from PC-MRI measurements in these 
locations. A limitation of this prior investigation is that a Womersley boundary condition 
was employed, and the effect of this idealized boundary condition on blood-flow rate and 
velocity patterns was not examined. 

In this paper, we describe the efiect of inflow boundary conditions on flow rate and 
velocity in the porcine aorto-aorto bypass model. We compare results of computational 
solutions performed using a Womersley inflow boundary condition and inflow velocity 
mapped directly from the PC-MRI data ( in vivo experiments by Ku et al. 2002). 

2. Methods 
The anatomic model is constructed from MRA data as follows. A vessel path is iden- 

tified and two-dimensional shce planes are positioned along this path in the volumetric 
image data. A level-set method is used to extract closed curves representing the vessel 
boundary in each two-dimensional plane (Wang et al. 1999). A surface is lofted through 
these curves and a soUd model constructed, (see figure 1). 

An automatic finite-element mesh generator is used to discretize the solid model 
(SCOREC, Rensselaer Polytechnic Institute). For the calculations described herein, a 
1.2 million tetrahedral element mesh was used (figure 1). 

As a first approximation we assume that the vessel walls are rigid and that blood 
behaves as a Newtonian fluid (Taylor et al. 1999). With these simplifications, the incom- 
pressible Navier-Stokes equations describe the problem. 

Ui + UjUij    =-{p^i/p) + Tijj+fi ^^-^l 

The density p is constant, Ui is the i*'' component of the velocity, p the pressure, /i the 
prescribed body force, and r^ the viscous stress tensor given by T^ = v{uij -\- Uj^t), 
V = fi/p is the kinematic viscosity. 

Velocity and pressure are solved using a stabilized finite-element method (Taylor et al. 
1998, Jansen et al. 2000). A traction-free boundary condition is used at the outlet. 
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FIGURE 1. Pig anatomy and mesh at the stenosis (left). Cross-sections where flow rate is mea- 
sured are shown. Measured velocity profiles at the inlet for times A, B, C and D in the cardiac 
cycle. Corresponding Womersley velocity profiles (right). Reference vector: v^ = 10 cm.s~ . 

Two different pulsatile velocity profiles are imposed at the inlet of the calculation 
domain: the actual velocities measured using PC-MRI (including in-plane components,) 
or an idealized Womersley velocity profile derived from the measured flow rate. 

Womersley theory is based on the analytical solution of the Navier-Stokes equations in 
the case of a fully-developed pulsatile flow in a straight citcular cylinder (of radius R). 
Keeping these assumptions in mind, it can be applied to blood flow: when the flow rate, 
Q{t), is known, the axial velocity profile can be derived. Given the period of the cardiac 
cycle (T = 27r/w), a Fast Fourier Transform is used to extract the frequency content of 
the flow waveform. 

The Fourier coefficients B„ and the Womersley velocity profile in terms of the radius 
r and the time t are 

m 
N 

n=0 

■^'^- u(r t) = ^^ 
&' V 

N 

+E^" 
n=l 

7rl?2 
Jo(ani^/') 
2Ji(a„i3/^) 

a„i3/2J„(a„i3/2)_ 

where Jo and Ji are Bessel functions, and a„ = Ry/{nu})/v. 
The Womersley number, cci, takes the value of 10.8 in our simulations. The period is 
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FIGURE 2. Flow rate versus time (left), flow rate ratio versus time (right).  
  : outflow (data), —o— : aorta (simulation), ■•• ••■• : aorta (data), 
(simulation), ••• ■» ■•■ : bypass (data), : outflow (data aorta + bypass). Time A: end 
diastole, time B: mid-systole, time C: peak systole, time D: mid-diastole 

: inflow (data), 
-^ — : iDypass 

T = 0.62 s. The Reynolds number measured at the inlet varies from 50 at end diastole 
(time A, figure 2) to 1300 at peak systole (time C, figure 2). 

Prom measured data we calculate the flow rate (figure 2, full line, left). As we do not 
have a circular inlet, we first calculate the Womersley velocities for a constant radius, 
R, corresponding to the maximum radius of the lumen. The resulting velocity profile 
is then mapped on the real geometry. In this model, the measured inflow cross-section 
is not normal to the vessel path, so that the velocity vectors need to be reoriented. 
The shape of the velocity profile is kept similar (with zero values at the boundaries 
and a maximum at the centroid of the vessel), and the flow rate is conserved, leading 
to a "quasi-Womersley" profile. The measured three-component and ideaUzed velocity 
profiles are shown on figure 1 (left and right side cross-section respectively) at four 
representative times in the cardiac cycle (see time A, B, C and D on figure 2). In contrast 
to the measured three-component velocity profile, which is fairly uniform, the Womersley 
solution is characterized by a smooth profile. The descending aorta is curved in such a 
way that the in-plane component of the velocity vectors for the three-component data is 
not negligible and a large quantity of blood enters the bypass graft. 

3. Results 

3.1. Flow rates 

Comparison of the flow division in the simulation and in the experiment show a maximum 
of 10% discrepancy at peak systole, both in the bypass (figure 2 left, triangles) and in the 
aorta (figure 2 left, circles). We notice on this graph that the measured flow rate is always 
larger than the result of the simulation. The flow rate in the simulation was extracted from 
measurements of the three components of the velocity at the location of the inlet, whereas 
the data plotted at the location of the aorta and the bypass correspond to through- 
plane velocity measurements only. The flow rate measured further downstream of the 
stenosis ("Outflow") with the through-plane technique is also higher than that given by 
the three-components velocity measurements (figure 2 left, dashed fine). Furthermore, 
the sum of the measured flow rate in the aorta and the bypass (figure 2 left, dotted 
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FIGURE 3. Transversal cross-section: comparison of the velocity magnitude (in cm.s ^) for the 
three component case (right) and the Womersley case (left) at times A, B, C, D 

line) is not equivalent to that measured (with the same measurement technique) at the 
outlet (figure 2 left, dashed line). Assuming that the segmentation process of the vessel 
boundary does not add any error, this difference can be due to a small change in the 
physiological state of the pig (peak systole is slightly shifted), or illustrates the fact that 
the vessel wall is compUant. 

As the flow division between the two branches is not dependent on which measurement 
technique was employed, we can still compare simulation and imaging data (figure 2, 
right). On average, in the simulation, 9.7% of the fluid that enters the domain goes into 
the aorta (open circles) and 10.5% in the experiment (plain circles). The majority of 
blood flows into the bypass: 90.3% in the simulation (open triangles) versus 89.5% in 
the experiments (plain triangles). Due to pulsatile effects, the flow division varies slightly 
during the cardiac cycle, and particularly at end-diastole, between the deceleration and 
acceleration phases. 
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FIGURE 4. Aorta cross-section (above the stenosis): comparison of the through-plane velocity 
{v.n in mm.s~^) in the three-components case (left) and the Womersley case (right) 

Within the generally-accepted 10% error band in MRI measurements, the flow rates 
in the calculation and the data compare favorably. 

3.2. Influence of inflow profiles: three components and Womersley 

In order to characterize the influence of inflow boundary conditions, we will focus on four 
representative times in the cardiac cycle (time A, B, C and D, figure 2). 

A basic observation that has been previously made in the configuration of a tight 
stenotic vessel (Khalifa & Giddens 1981) is that a non-periodic behavior from cycle to 
cycle appears upstream and downstream of the stenosis. Even though the physiological 
Reynolds numbers at the inflow are small, the reduction in area at the stenosis is large 
(85%) and pulsatile effects excite vortex shedding. In our model, in addition to the 
"simple restriction case" studies, the aperiodic stenotic jet is also influenced by the high- 
velocity fluid coming from the bj^jass. Both the three-component and the Womersley 
inlet boundary conditions show this phenomenon. As a consequence, we will focus only 
on averaged-velocity comparisons between experiment and numerics. We consider the 35 
periods following the usual five periods required to initialize the simulation (i.e. about 
four flow-through times). 

The velocity-magnitude field across the domain is plotted in figure 3 for the three- 
component case (left side of the figure) and for the Womersley case (right side). As 
expected close to the inflow, one can clearly observe the variations induced by using 
two different velocity profiles as a boundary condition. At all characteristic times the 
isocontours of the velocity in the Womersley case are aligned with the vessel centerline 
at the inlet, whereas the inlet velocity in the three-component case is oriented towards 
the bjT)ass. This fact locally modifies the fluid mechanics in the domain, but global 
parameters such as the flow division in the branches are identical in the two cases. The 
same general features of the flow can be recognized: during systole (acceleration phase, 
times B and C), a large recirculation zone appears above the stenosis, while high velocities 
are measured at the stenotic jet. On the inside WEJI of the bypass graft, the region of 
separation classically found in curved vessels is observed. Comparing local velocities in 
the two simulations, we find some variations in the recirculation area above the stenosis, 
mainly in the deceleration phase (time D, figures 3 and 4). When the flow rate is high, 
a large vortex is generated above the stenosis (times B and C, figures 3 and 4). In both 
cases the size of this vortex is similar. During the deceleration phase and later (times D 
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FIGURE 5. Aorta cross-section (above the stenosis): comparison of the through-plane velocity 
(v.n in mm.s~^) in experiments (left) and the simulation in the three-components case (right). 

and A, 3), the flow is more perturbed and vortex shedding occurs, leading to different 
behavior in the two cases. In the bypass graft, at all times in the cardiac cycle, the extent 
of the separation region is more pronounced in the Womersley case. On figure 3, the jet 
is also influenced by the boundary conditions downstream of the stenosis. 

Using physiological boundary conditions has an impact on local velocity. Whether 
these variations of the flow field are large enough to cause, or modify the development 
of, thrombosis is still an open question. 

3.3.  Comparison of experiment and simulation 

Figure 5 shows the through-plane velocity obtained in the simulation (in the "realis- 
tic" three-component case) and in the experiments at an aortic cross-section above the 
stenosis. The velocities are similar, which is consistent with what we observed above: 
the flow rates in the experiments and in the calculations compare well. When comparing 
local velocity patterns, the results do not agree. The maxima of the velocity are shifted 
between the data and the simulation (time D, figure 5). 

The comparison is not conclusive. On the experimental data, the isocontours of the 
velocity are noisy, particularly at end-diastole and during the acceleration phase (times A 
and B, figure 5). At peak systole and mid-diastole (times C and D, figure 5), the velocity 
profiles corresponding to the experiments look erratic and do not reflect the complexity 
of the contours found in the simulation. 

Steinman (2002) reports in a review that MRI is Ukely to fail when measuring sudden 
local changes in the flow field and in the presence of complex flow patterns. To add to 
the diSiculty of measuring accmrate velocity fields in vivo (the pig has to be kept in the 
same physiological state), the possible sources of error in the procedure involved in the 
simulation are numerous. The volumetric images (MRA), as well as the two-dimensional 
MRI data, need to be segmented in order to build the geometric model and to extract the 
velocity vectors at a specific location. Even using an automatic segmentation program 
to avoid human subjectivity, an error of a few pixels may induce some variations in the 
calculation and in comparing the velocity profiles. 
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4. Conclusion and future plans 

Prom measurements of the velocity vectors in the aortic vessel, above the restriction, 
we observe that its characteristics differ from the analytical solution of a pulsatile flow. 
We have demonstrated numerically that the flow field in the domain is modified when 
using one inflow condition or the other. We beUeve that using the "true" velocity profile 
as a boundary condition in the simulation is essential when trying to understand the 
evolution of diseases. In one of the experiments, a clot formed in the separation region 
in the bypass, a typical region of the flow where we obtained differences in the velocity 
between the two cases. While the measured division of the flow rate between the two 
passages is well predicted in the simulation, detailed flow patterns do not seem to be 
captured properly by the measurements. More complex in vitro experiments, with large 
flow variations, should be considered for validation purposes. Further, the influence of 
variations in geometry should be evaluated. 

REFERENCES 

BoTNAR, R., RAPPITSCH, G., SCHEIDEGGER, M. B., LIEPSCH, D., PERKTOLD, K. & 
BoESIGER, p. 2000 Hemodynamics in the carotid artery bifurcation: A comparison 
between numerical simulation and in vitro MRI measurements. J. Biomech. 33,137- 
144. 

CEBRAL, J. R. & LoHNER, R. 2001 Prom medical images to anatomically accurate finite 
element grids. Int. J. Num. Methods Engng. 21, 985-1008. 

DiLLEY, R. J., Mc GEACHIE, J. K. & PRENDERGAST, F. J. 1988 A review of the 
histologic-changes in vein-to-artery grafts with particular reference to intimal hy- 
perplasia. Arch. Surg. 123, 691-696. 

GEWERTZ, B. L., GRAHAM, A., LAWRENCE, P. P., PROVAN, J. & ZARINS, C. K. 1992 
Diseases of the vascular system. Essentials of general surgery, Lippincott Williams 
& Wilkins, Philadelphia, pp. 328-347. 

JANSEN, K. E., WHITING, C. H. & HULBERT, G. M. 2000 A generalized-alpha method 
for integrating the filtered Navier-Stokes equations with a stabiUzed finite element 
method. Comput. Meth. Appl. Mech. Engrg. 190, 305-319. 

KHALIFA, A. M. A. &c GIDDENS, D. P. 1981 Characterization and evolution of post- 
stenotic flow disturbances. J. Biomech. 14, 279-296. 

Ku, J. P., DRANEY, M. T., ARKO, F. R., LEE. W. A., CHAN, P., PELC, N. J., 
ZARINS, C. K. & TAYLOR, C. A. 2002 In Viw validation of numerical predictions 
of blood flow in arterial bypass grafts. Ann. of Biomed. Engng. 30, 743-752. 

MiLNER, J. S., MOORE, J. A., RUTT, B. K., & STEINMAN, D. A. 1998 Hemody- 
namics of human carotid artery bifurcations: Computational studies with models 
reconstructed firom magnetic resonance imaging of normal subjects. J. Vase. Surg. 
28, 143-156. 

PERKTOLD, K. SZ RAPPITSCH, G. 1995 Computer-simulation of local blood-flow and 
vessel mechanics in a compliant carotid-artery bifurcation model. J. Biomech. 28, 
845-856. 

PERKTOLD, K., RESCH, M. & PETER, R. 1991 Three-dimensional numerical analysis 
of pulsatile flow and wall shear stress in the carotid artery bifurcation. J. Biomech. 
24, 409-420. 



Image-based computational modeling of blood flow in an aorta bypass graft     333 

STEINMAN, D. A. 2002 Imaged-based computational fluid dynamics modeling in realistic 
arterial geometries Ann. Biomed. Engrg. 30, 483-497. 

TAYLOR, C. A., DRANEY, M. T, KU, J. P., PARKER, D., STEELE, B. N., WANG, K. & 
ZARINS, C. K. 1999 Predictive medicine: Computational techniques in therapeutic 
decision-making. Computer Aided Surgery 4, 231-247. 

TAYLOR, C. A., HUGUES, T. J. R. & ZARINS, C. K. 1996 Computational investigations 
in vascular disease. Computers in Physics 10, 224-232. 

TAYLOR, C. A., HUGUES, T. J. R. & ZARINS, C. K. 1998 Finite element modeling of 
flow in arteries. Comput. Methods Appl. Mech. Engrg. 158, 155-196. 

TAYLOR, C. A., HUGUES, T. J. R. & ZARINS, C. K. 1998 Finite element modeling 
of 3-dimensional pulsatile flow in the abdominal aorta: relevance to atherosclerosis. 
Ann. Biomed. Engrg. 26, 1-13. 

TAYLOR, C. A., HUGUES, T. J. R. & ZARINS, C. K. 1999 Efilect of exercise on hemo- 
dynamic conditions in the abdominal aorta. J. Vase. Surg. 29, 1077-89. 

ZARINS, C. K. & TAYLOR, C. A. 1998 Hemodynamic Factors in Atherosclerosis Vascular 
surgery: a comprehensive review (W. S. Moore, ed.) Saunders Company/Elsevier, 
Amsterdam, pp. 97-110. 

WANG, K. C, BUTTON, R. W. & TAYLOR, C. A. 1999 Level Sets for vascular model 
construction in computational hemodynamics IEEE Engineering in Medicine and 
Biology. 18, 33-39. 



Center for Turbulence Research "^''^ 
Annual Research Briefs 2002 

Hemodynamic changes induced by stenting in 
elastic arteries 

By   F. Nicoud f 

1. Motivation and objectives 
Angioplasty, with or without endovascular stenting, is a promising, minimally-invasive 

technique that can be used as treatment of occlusive disease in medium to large arteries. 
It has been applied extensively in the coronary, renal, and peripheral vascular systems. 
The use of intravascular stents tends to lower the complication rate. Although re-stenosis 
rates as high as 15-30 % after six months for human coronary arteries have been observed; 
see e.g. Rau et al. (1998). One possible explanation for this observation relies on the 
hemodynamic modifications induced by the prosthesis. Changes in wall shear stress axe 
believed to induce endotheUal dysfunction, ultimately leading to intimal hyperplasia and 
re-stenosis. Davies et al. (2001) suggest that magnitude of the shear stress is of secondary 
importance to the spatial and temporal fluctuations of this quantity. 

In vivo testing performed by Vernhet et al. (2001), Vemhet et al. (2000), Holland, 
Charifi & Verrier (1999) show that endovascular stenting induces a large modification of 
the arterial comphance and thus may drastically modify the propagation of arterial waves 
by introducing artificial reflexions. The first objective of this study is therefore to assess 
the amount of pressure-wave reflexion related to the endovascular stenting of an elastic 
artery. For this pinrpose, the stented section of the vessel is modeled as an elastic duct, 
whose comphance is less than the non-stented artery. We intent to clarify the extent of 
reflexion that can be expected, depending on the characteristics of both the stent and the 
host vessel. Another expected effect of the comphance mismatch induced by stenting is 
to modify the details of the blood motion in the stented area. Specifically, the wall shear 
stress (averaged over the cardiac cycle) might be changed, as well as the level of its systo- 
diastohc variations. For high enough Reynolds numbers, one also expects recirculation 
zones to appear with larger residence times. The second objective of this paper is thus to 
clarify the changes in the blood motion that can be expected in relation to endovascular 
stenting. Note that this study deals with the global effect of the compliance mismatch, 
neglecting the details of the prosthesis structure (struts). Consistently, the prosthesis is 
modeled as a uniform (elastic) tube with its own compliance. 

2. The pressure-wave point of view 
2.1. Basic equations 

The general one-dimensional (ID) equations describing the pulsatile blood flow (mass 
and momentum conservation) in compUant arteries are well known since the work of 
Hughes & Lubhner (1973): 

dA     dAu     „       du       du        IdP     fyU .„.. 

t University of Montpellier II, CC51, 34095 Montpellier Cedex 5, Prance 
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where u and P axe the averages (over the cross section of the artery) of the velocity along 
the x-direction and the pressure (relative to that outside the duct) pressure respectively, 
A is the area of the cross section, p is the blood density and /„ u/p stands for the viscous 
drag. Assuming that the velocity and pressure fluctuations are small enough to neglect 
non-linear terms and introducing the state equation of the artery A = A{P), we obtain 

^ + A^-0       ^ + i^ + il^-0 (22) 
at ^A'dx-^'    m^pdx^ p -" ^^-^^ 

where A' stands for the derivative of the cross-sectional area with respect to the pressure 
{A' = dA/dP), that is, the compliance. The non-linear formulation (2.1), although more 
general than (2.2), suffers from several drawbacks. Indeed, since it has to be solved in 
the time domain, the viscous-drag term must be assessed by using the Poiseuille assump- 
tion for the velocity profile instead of the more accurate frequency-dependent Womersley 
(1955) solution. Moreover, any viscoelastic wall behavior is difficult to account for since 
A' may depend on the frequency of the perturbation in this case. In contrast, the linear 
formulation (2.2) can be solved in Fourier space, and the abovementioned physical be- 
havior (frequency-dependent velocity profile and viscoelasticity) can be included without 
difficulty. Consistently, Reuderink et al. (1989) have shown that better overall accuracy 
is obtained by using the linear formulation. In the course of the present study, u and P 
will be taken as the solution of (2.2). 

Considering a sector whose diameter and compliance do not depend on the space 
variable x and letting P = Pexp{—jujt) and u = u exp{—ju;t), where j^ = —1 and a; is 
the angular frequency of the wave, the classical wave equation ^Pjdx"^ -f fc^P = 0 can 
be easily derived, the complex wave number being fc = yju){pijj + jfv)A' jA and the wave 
speed being c = u/k. The general solution within a homogeneous segment is then 

p _ p+ gi*;(x-xo) ^ p- g-jfe(x-io) ^ _ /'p+ gjfc(a:-xo) _ p- ^-jk{x-xo)\ 
puj -f jU \ ' 

(2.3) 
where xo is the abscissa of the left boundary of the sector and P+ and P correspond to 
the amplitude of the forward and backward pressure waves. Their values are determined 
to satisfy the boundary conditions at x = XQ and x = XQ -I- L, where L is the length of 
the sector. 

2.2. Modeling the endovascular stenting 

To model the wave reflexion induced by an endovascular stent placed in an elastic artery, 
three successive homogeneous segments are considered, each having its own set of con- 
stant area and compliance (see figure 1). Each physical quantity in sector number i 
(i = 1,2,3) is denoted by index i. Conservation of the total flow rate and energy at the 
interfaces 1 — 2 and 2 — 3 requires, for j = 1,2: 

AjUj{xoj + Lj) = Aj+iUj+i{xo._^^),     Pj{xoj + Lj) = Pj+i(xo^.^J. (2.4) 

Two boundary conditions, at x = XQ, =0 and x = X03 -1- L3, are needed to close the 
problem. To assess the stent response without spurious wave reflexion, non-reflecting 
boundary conditions are prescribed at both sides, leading to P^ = 1 and P^ = 0. The 
four remaining wave amplitudes, viz. P2 iP},Pi ,P2 , are determined by solving (2.4) 
for j = 1,2. The complex coefficient of wave reflexion due to the stent is then defined as 
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FIGURE 1. Schematic of the three homogeneous sectors used to model an artery stenting in 
terms of waves. 

jRstent = exp(-2jfciLi)Pf/Pi*". After some algebra we find 

A2K2{AiKi - A3K3) cos{k2L2) - jjAiKiAsKz - {A2K2)^) sm{hL2) 
Rs 
  (2 5) 

'*""* " ^2X2(^1X1 + AsKs) cos(fe2L2) - j{ArKiA3K3 + {A2K2)^) sin(fe2i2) 

where Ki = h/ipu + jfy,). A typical value of the speed of propagation of waves in 
(human) arteries being a few meters per second, the wavelength is usually a few meters. 
On the other hand, the length scale of the stent is most likely equal to a few centimeters, 
meaning that the numerical value of the dimensionless parameter fc2-Z^2 is small compared 
to unity. Moreover, since the goal of this study is to assess the wave reflexion related to 
the endovascular prosthesis, one can assume that there is no reflexion in the absence 
of a stent, i.e. when AiKi = A3K3 (in other words, we assume that the host artery is 
perfectly homogeneous). Finally, we obtain the following first-order expression for the 
reflexion coefficient: 

j(l-A2),    ,     .   ^,„   .  ,2s .       AiKi 
Rs] tent — 2A 

k2L2 + 0{{k2L2r),       A = 
A2K2 

(2.6) 

This relation shows that the theoretical reflexion induced by an endovascular prosthesis 
decreases with the length of the stent and increases with the frequency of the wave. 
Moreover the reflexion coefficient is zero when A = 1, i.e. AiKi = A2K2. Assuming that 
viscous effects can be neglected in the reflexion process makes A and fc2 real numbers with 
A = y/AiA.(/A2A'2 and fe2l'2 = u}^/pAyML2. Equation (2.6) then leads to a convenient 
formula to assess the amount of wave reflexion: 

•Rst( ■J'^y/P 
A2A'2 

2y/AiA[ 

AiA[ L2 

A2 
(2.7) 

Prom this relation, the amount of wave reflexion is related to the geometrical/mechanical 
mismatch induced by the stenting and to a stent shape factor L2M2, as well as to the 
flow conditions. Moreover, it shows that a stent satisfying the relation A2 = AiA'JA'2 
produces no wave reflexion. The compliance Ag of the stent being always smaller than 
the compliance A'^ of the host artery, it follows that overdilation {A2 > Ai) tends to 
reduce the amount of reflected waves. For physiological and mechanical data obtained 
from animal experimentation (see section 3.3), we find out that the modulus of J?stent is 
not larger than a few percent. 
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3. Numerical approach 

The simple ID analysis provided in section 2 cannot be used to gain insights about 
the details of the fluid motion modifications related to the artery stenting. Of significant 
interest are the perturbations in wall shear stress induced by the compliance mismatch. 
In the ID description of the blood flow, the shear stress is modeled by assuming that the 
shape of the velocity profile is known. Such knowledge is attainable only when the flow 
is varying weakly along the streamwise direction. However, in the case of stenting, no 
reasonable assumption regarding the shape of the velocity profile within the transition 
area can be formulated a priori and the multi-dimensional flow equations must be solved. 

The incompressible unsteady Navier-Stokes equations are solved by the NSIKE code 
developed at University of MontpelUer and INRIA by Medic & Mohammadi (1999). The 
solver is based on the projection method of Chorin (1967) with finite element discretiza- 
tion. A third order low storage Runge-Kutta approach is used for the time-stepping. At 
each sub steps, the computation of the intermediate velocity is done explicitly and the 
stabilization of the convection terms is based on the Positive Streamwise Invariant (PSI) 
residual distribution scheme proposed proposed by Deconinck et al. (1993) and Paillere, 
Carette & Deconinck (1994). Specifically, a mixed Galerkin/PSI formulation has been 
used in order to minimize the numerical dissipation while ensuring the stabiUty of the 
solution. Moving boundaries are accounted for by the Arbitrary Lagrangian Eulerian for- 
mulation. This code has been extensively validated by Medic & Mohammadi (1999), who 
computed classical test cases such as the flow over a 2D flat plate, within a closed cavity, 
and over a backward-facing step. Specific unsteady test cases have been performed in the 
course of this study, two of which are presented in sections 3.1 and 3.2. The numerical 
setup used to study the effects of the endovascular stenting is then described in section 
3.3. 

3.1. Pulsed pipe flow 

We consider the pulsatile flow of an incompressible Newtonian fluid (kinematic viscosity 
u) within a rigid, straight circular pipe of radius RQ and length L. For a pulsed flow rate 
of the form Q{t) = Qo + Qi exp(jia;t), where w is the pulsation and Qo and Qi stand 
for the steady and pulsed parts of the flow rate, the (complex) velocity profile may be 
written following Womersley (1955) as 

on   /       ^2 \      n   1- -^0^°^/^^ 

CllJo(°') 

where AQ = TTR^ is the cross section area and a = J^^^WQ, where WQ = RO^/UJ/V is 
the Womersley parameter. Due to the incompressibility constraint, the solution does not 
depend on the abscissa x along the pipe. The present test case consists in imposing the 
velocity profile (3.1) at the inlet of the computational domain (x = 0) together with 
a zero-pressure boundsiry condition at the outlet (x = L), and checking the ability of 
the code to preserve the analytical solution throughout the pipe. Starting with a zero- 
velocity, constant-pressure field, four cycles were computed in order to reach a proper 
periodic state. The results shown correspond to L/Ro ~ 53 and WQ ^ 10.63. The mean 
bulk Reynolds number based on RQ and QO/AQ is flj = 320 while the flow-rate ratio is 
Qi/Qo = 0-5. Under these conditions, the flow reverses. The numerical solution obtained 
by solving the Navier-Stokes equations in cylindrical form with a mesh of 169x21 grid 
points (169 nodes in x, 21 along the radial direction r) is virtually ID (no dependence 
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FIGURE 2. Analytical (lines) and numerical (symbols) velocity profiles at x:systole and 
+:diastole. 

1.25 

FIGURE 3. Analytical (lines) and numerical (symbols) wall shear stress as a function of time. 
 , finite differences applied to (3.1);  , analytical differentiation of (3.1). 

along the longitudinal coordinate x, not shown). The overall comparison between ana- 
lytical and numerical velocity profiles is good, as shown in figure 2. Eventually, the wall 
shear stress obtained numerically is in good agreement with that expected over the pe- 
riod of time. Figure 3 shows that the agreement between the wall shear stress given by 
the numerical solution and that obtained by formally differentiating (3.1) is fairly good 
(less than 10 % error). The agreement becomes virtually perfect when the gradient of the 
analytical profile (3.1) is evaluated using second-order finite differences with the same 
resolution as that used in the simulation. 

3.2.  Wall-induced channel flow 

The computational domain now extends from x = 0 to a; = 25 streamwise and from 
y = Otoy = h cross stream. A symmetry condition is imposed at both boundaries x = 0 
and y = 0 while zero pressure is prescribed at the section x = 25. The boundary aty = h 
is a moving straight 

wall which remains parallel to the x-axis and whose (complex) position as a function 
of time t is given by h{t) = ho{l + ee"^'"*). In this expression, ho is the mean distance 
between the wall and the symmetry plane y = 0 and e fixes the ampfitude of the wall 
oscillation. Seeking a stream function of the form ^ = xF{r))e~^'^^, where T] is the reduced 
coordinate T? = y/h{t), one may derive the following equation for the function F: 

h'h. 3^u2, F"" + -^(TIF'" + 2F") + '—h^F" = 0. 
V V 

(3.2) 
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FIGURE 4. Analytical (sjonbols) and numerical (lines) streamwise (left) and normal wise 
(right) velocity profiles at times -f, t = 0; x,t = T/4; *, t = T/2 and a ,t = 3T/4. 

Recall that the velocity components are given by u = d^/dy and v = —d^/dx so that 
the boundary conditions i;(i,0) = du/dy{x,Q) = 0, u{x,h) = 0 and v{x,h) = h' = 
-juehoe-i'^^ lead to F{0) = F"(0) = 0, F'{1) = 0 and F(l) = jueho respectively. 
Expanding F as power series of the (small) paxEimeter e, vi2. F/e = FQ + eFi + O(e^) 
leads to the following first order solution 

Fo = juho 
Tj — sinh(Qr7)/acosha 

1 — tanh(a)/a 
(3.3) 

where a = J^/^WQ is proportional to the Womersley parameter WQ = ho yjuijv. Figure 
4 shows the comparison between the first-order analytical solution and the numerical 
profiles for x = 11.875, e = 0.05 and WQ = 2.8. The agreement is good for the four 
phases considered which correspond to the uppermost position (t = 0), the most negative 
wall speed {t = T/4), the wall bottom position (* = T/2) and the maximum wall speed 
{t = 3r/4) respectively. Note that for the values of the parameters selected, the first- 
order correction eFi is negligible compared to FQ SO that the approximate solution, (3.3) 
is relevant to the test case. 

3.3.  Computational domain 

Since our objective is to investigate the global effect of the compliance mismatch induced 
by stenting, the endovascular prosthesis is modeled as a uniform duct (the details of the 
struts are not represented) whose wall is not compliant. Such a "prosthesis" is inserted 
within an elastic artery with compfiant wall, as shown in figure 5. We suppose that the 
computational domain is sufiiciently short to neglect any variation of the host artery 
chaxacteristics. Moreover, the flow rate entering the domain is taken similarly to section 
3.1, viz. Q(a;iniet,t) = Qo + Qiexp(jw(t - Xjniet/c)), where w is the pulsation, Xi„]et 
is the abscissa of the inlet section, and QQ and Qi stand for the steady and pulsed 
parts of the flow rate. The mechanical and geometrical data were obtained from animal 
experimentation performed by Vernhet et al. (2001): the angular frequency is w = STT 

(only the first harmonic of the temporal evolution of the flow rate is kept as a first 
approximation), the mean artery radius is iio = 1.5 mm, the distensibility coefficient of 
the non-stented artery is A'/A = 20.7 x 10"^ Pa'^ and the length of the stent is set 
to Lstent = 13 mm. At the stent level, the compliance measured is small enough (six 
times smaller than in the host vessel) to be neglected in this exploratory study (rigid 
prosthesis). 

In the real world, the motion of the vessel boundary results from the coupling between 
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FIGURE 5. Schematic of the computational domain. 

the fluid and wall mechanics and the local radius is related mainly to the pressure field. 
Such a coupling is difiicult to handle, because the density of blood and tissue are of 
the same order and the rheology of the vessels is far from well understood. Besides, we 
are mostly interested in the response of the fluid mechanics to wall-motion perturbations 
induced by the compliance mismatch. In this framework, the fluid/wall couphng problem 
can be avoided by prescribing the wall motion a priori. Since the flow rate is harmonic 
with angular frequency u, the wall displacement for an elastic uniform artery without 
reflexion may be written as 

(3.4) ii(x,t) = i?o(l + ee^'^"*-'"^) >      fc = 7. 

where the wave number fc is related to the speed of the (forward) pressure wave c. 
The animal experimentation of Vernhet et al. (2001) suggests e = 0.05, meaning that the 
ampUtude of the wall displacement is close to 2ei?o = 0.15 mm. The speed of propagation 
is chosen real (no viscous-damping effect accounted for). Moreover, its real part is fixed 
by stating that, the non-stented artery being uniform along the streamwise direction, the 
mass-flow rate at any section x = L should be the time-lagged version of the mass flow 
rate at x = Xiniet- The conservation of mass appUed to the artery sector 0<x<L then 
impUes that: 

/•Xiniet 
Q   gjw(f-(Xi„iet+I.)/c)  _ Qjgjw(t-a:inlet/c) +27r   / 

•'Xiniet 

R-T~ax 
at 

(3.5) 

Making use of (3.4) and keeping only first-order terms in e to assess the integral in (3.5), 
we obtain the following expression for the speed of propagation of the pressure wave: 

c=^ + 0{l),     M = ^B^ 
2Aoe 

(3.6) 

From the physiological data obtained by Vernhet et al. (2001), the following values were 
used for the flow rate: Qo ^ 2413 mm^/s and Qi ~ 1761 mm^/s. Equation (3.6) then 
leads to c ~ 2492 mm/s. With w = STT, the corresponding wavelength is A ~ 623 mm. In 
the case where the vessel is stented between abscissae Xi and X2 (see figure 5), the wall 
displacement is zeros (fully rigid stent) for xi < x < X2 : 

(3.7) R{x,t) = Ro{l + efix)ei^^'-''''^) 

where the damping function is /(x) = [1 - tanh(x - xi)]/2 for x < (xi -I- X2)/2 and 
/(x) = [H- tanh(x - X2)] exp(jfc(x2 - xi))/2 for x > (xi -f- X2)/2. Equation (3.7) gives 
the wall displacement for an elastic stented artery, assuming that the speed of propaga- 
tion within the prosthesis is infinite (since the wall is not compUant). Note that Lstent/A 
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being very small, (2.7) can be used to estimate the reflexion coeflicient under the me- 
chanical conditions considered. This latter relation leads to |Estent| ^ 2 %. As a result, 
the pressure field is related mostly to the forward pressure wave, which justifies the fact 
that no backward-propagating wave is accounted for in (3.7). Besides, the length of the 
transition zone between the elastic artery and the stent is of order 3 mm (this is a direct 
consequence of the damping function f{x) used in 3.7). This value is in agreement with 
the observations made during the animal experimentations of Vernhet et al. (2001) and 
showing that the buffer region is close to one diameter long. Finally, the radius of the 
non-compliant prosthesis is set to the medium artery radius RQ (no overdilation). An 
over dilated prosthesis can be represented by the following wall displacement: 

R(x, *) = /2o (l -f e fix) e^M-'^-)) + (1 - /(x))<Ji2,tent (3.8) 

where the damping function is defined as in (3.7) and SRstent is the amount of overdila- 
tion. 

4. Numerical results 
Several 2D axisymmetric simulations have been performed, based on the computational 

domain and wall motion described in section 3.3. In all cases, the bulk Reynolds number 
based on the steady part of the flow rate Qo and the mean radius RQ is close to Rb = 102. 
The Womersley number is Wo = 3.36. The velocity profile is imposed at the inlet section 
^ = 2:iniet following the (complex) Womersley solution in elastic tubes: 

,,„,,, =    2Q^_ A :!_\ + Qi i-Jo("^)A(^)^.(t-x,„../c) 
nRixMet,t)2 \      R{xMeut)y ^ T:R{xM.ut? 1 - 2Ji{a)/aJoia) 

(4.1) 

l-2Ji{a)/aJo{a) 

where y = r/R{x,t) is the reduced radial coordinate (0 < y < 1). A zero-constraint 
condition is used at the outlet section x = Xoutiet- In order to assess the effect of the in- 
let/outlet boundary conditions on the results, computational domains with two difi'erent 
lengths have been considered. Two diflFerent spatial resolutions were also used, to assess 
the spatial discretization errors. The main characteristics of the calculations performed 
are given in table 1 where Ax is the grid spacing in the streamwise direction in the area 
xi <x <X2 and Ar refers to the grid spacing in the radial direction. Runs Rl and R2 
correspond to reference calculations without endovascular prosthesis, the artery being 
fully rigid (no wall displacement) for Rl and elastic for R2. Labels R3 and R4 corre- 
spond to runs with stenting, the overdilation being non-zero only for the latter where 
<5-Rstent = e-Ro (the stent radius is equal to the artery radius at systole). When present, 
the stent is between x\ = 34 mm and X2 = 47 mm. Runs whose label contains 'a' have 
been performed with a longer computational domain than others. Labels containing letter 
'b' correspond to runs with finer mesh in the radial direction. In all cases, four cardiac 
cycles were computed first, in order to reach a periodic state. A fifth cycle was then 
computed in order to anal3rze the results and compare the difi'erent physical/numerical 
configurations. 

Time evolutions of the flow rate at inlet and outlet sections are shown in figure 6 for case 
R2. The constraint that was introduced in section 3.3 in order to set the speed of prop- 
agation of the pressure wave is fulfilled satisfactorily. Indeed, the flow rate at a; = Xoutiet 
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1 Run II Wall motion Tj    1 SRstent Sinlet ^outlet Ax  1  AT-   1 # of grid points | 

1 Ri \\R{ x,t) = Ro 0.0 1 N/A 0 80 0.07510.286 1 3528          1 

1 1^2 II (3.4) 0.051 N/A 0 80 0.07510.286 1 3528          1 

|R3|| (3.7) 0.051   0.0 0 80 0.07510.2861 3528          1 

|R4|| (3.8) 0.051 0.075 0 80 0.07510.286 1 3528          1 

|R2a|| (3.4) |0.05|  N/A -30 110 0.07510.286 1 4368          1 

|R3a|| (3.7) j 0.051    0.0 -30 110 0.07510.286 1 4368          1 

|R3b|| (3.7) |0.05|    0.0 1   0 80 0.05010.2861 5208          1 

TABLE 1. List of the axisymmetric calculations performed, with their main numerical 
characteristics and the equations governing the wall motion. Lengths and abscissae are in mm. 

is the signal at a; = a;i„iet with a time lag close to (xoutiet - a:iniet)/c :^ 80/2492 ~ 0.032s. 
In absence of an endovascular prosthesis, all the physical quantities are self-similar, with 
a constant speed of propagation c along the computational domain. Due to the wall 
displacement (3.4), the wall shear stress is not constant in the streamwise direction, as 
shown in figine 7 at four different instants. Instead it alternately increases and decreases 
along the domain, depending on the phase considered. Note that the harmonic displace- 
ment (3.4) is never apparent, because the length of the computational domain (80 mm) 
is small compared to the wavelength (see also figure 9, top row). In spite of this, the 
numerical solution depends only weakly on the length of the whole domain, as shown 
in figure 8, which compares the wall shear stress firom runs R2 and R2a. Only small 
disagreement is visible, close to the upsstream end of the R2 domain (the smallest one). 
There is virtually no difference between the two runs in the central region. The same 
conclusion can be drawn in the case of a stented artery by comparing runs R3 and R3a 
(not shown). Thus, regarding the effects of the vessel stenting, the numerical results do 
not depend on the details of the implementation of the boundary conditions. In the case 
where the vessel is not compliant, there should be no time lag between shear-stress sig- 
nals at different locations, because the exact Womersley profile is imposed at x = XMet- 
Accordingly, the wall shear stress is mainly uniform over the streamwise distance in case 
Rl (see figure 7). 

The shape of the computational domain for cases R2, R3 and R4 is shown in figure 9 for 
times t = nT (corresponding to systole at the inlet section) and t = {n+l/2)T (diastole). 
The non-compHant region which represents the endovascular prosthesis is clearly visible 
(cases R3 and R4) in the central region. However, the over-dilated stent (R4) is hardly 
visible at systole since SRetent = e-Ro in this case. The contomrs of streamwise velocity 
show that the flow accelerates when the cross-sectional area decreases. The effect of the 
wall-motion mismatch on the wall shear stress is shown in figure 10. At systole, this 
quantity is larger in the medium part of the stented region (a; ~ 40 mm) than in the 
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FIGURE 6. Time evolutions of the flow rate at sections - 
X = Xoutiet for the case R2. 
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FIGURE 7. Wall shear stress for runs Rl (symbols) and R2 (hnes with symbols) at times: 
• :t = nT, o:t = {n+ 1/4)T, x-.t^in-ir 1/2)T and *:t = (n + 3/4)T. 
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FIGURE 8. Wall shear stress for runs R2 (symbols) and R2a ( ) at times: • : t = nT, 
o:t = {n+ 1/4)T, x:t = (n + l/2)r and *:t = (n + 3/4)r. 

non-stented artery. This is consistent with the fact that the cross-sectional area in R3 and 
at systole is smaller in the prosthesis zone (see figure 9). At diastole, the cross-sectional 
area within the stent is larger and the wall shear stress is smaller. In the transition zones 
between the endovascular prosthesis and the elastic artery, the stress experiences larger 
fluctuations, especially at systole. Extra stress is generated in the upstream transition 
zone, which acts as a convergence {x ~ 35 mm). Conversely, the downstream buffer 
region acts as a divergence at systole and tends to decrease the stress. Accordingly, the 
wall shear stress turns out to be locally smaller than its value in the non-stented artery 
{x ~ 47 mm). The transition zones have less effect at diastole, when the flow rate is 
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FIGURE 9 Shape of the computational domam at systole (left column) and diastole (right 
column) for the runs R2 (top row), R3 (medium row) and R4 (bottom row). The isolines of 
the streamwise velocity are plotted. The streamwise and radial coordmates are expressed m 
millimeters. The aspect ratio Ro/L has been multipUed by 35 for convenience. 

smaller. Note finally that using a finer mesh produces only small changes in wall shear 
stress (compare runs R3 and R3b). Thus the numerical errors are much smaller than the 
physical effects related to the stent. Figure 11 shows the time dependence of the stress 
near x = (xi + X2)/2 =i 40 mm. The amplitude of this quantity over the cardiac cycle is 
larger for the stented vessel than for the elastic artery. It is worth noting that although 
the length of the stent is very small compared to the wavelength, the amplitude of the 
wall shear stress in case R3 behaves more like case Rl (fuUy rigid tube) and less like case 
R2 (elastic tube). The over-dilated prosthesis, by avoiding the increase in shear stress 
at systole (there is no geometry discontinuity at systole for the case R4; see figure 9), 
drastically limits the increase in stress amplitude. 

5. Conclusions 
This theoretical/numerical study suggests that over-dilated stents produce less hemo- 

dynamic perturbations. Prom the pressure-wave point of view, the optimal overdilation 
is proportional to the compliance ratio. Moreover, because the reflexion coefficient is 
proportional to the stent-to-wavelength ratio, it is most likely that the amount of wave 
reflexion remains rather small. An easy-to-use formula is provided to estimate the re- 
flexion coefficient firom knowledge of the compliance before and after stenting. From the 
local hemodynamic point of view, the ampUtude of the wall shear stress is drastically 
increased (by 45-50 % at the stent level, possibly more in the transition regions) by 
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FIGURE 10. Wall shear stress for runs R2 (symbols), R3 ( ) and R3b (  ) at times 
*:t = nT and x:t = {n+ 1/2)T 

FIGURE 11. Wall shear stress versus time for runs  : Rl, 
I ~ 40 mm. 
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stenting. This result supports the idea that stenting can induce endothelial dysfunction 
via hemodjTiamic perturbations. The amplitude of the fluctuations in wall shear stress 
over the cardiac cycle are not as large when a (slight) over-dilatation is used. 
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Wavelet analysis of blood flow singularities by 
using ultrasound data 

By   Philippe May 

1. Motivation and objectives 
The eflFects of blood flow turbulence axe of great clinical importance in both medical 

and surgical areas. For example, several biological research fields have focused on the 
role played by turbulence on ceU and tissue behavior, It is now weU estabUshed that 
the transition to turbulence is expected to be dependent on flow pulsatility and on the 
nature of the arterial waU. There is evidence suggesting that the effect of pulsatility on 
transition to flow turbulence is common in a wide variety of arterial flows and several 
studies support this view (Winter 1984; Ku 1997). In addition, the presence of an intra- 
arterial singularity such as a stenosis, an aneurysm or a thrombosis is known to greatly 
increase the probabihty of transition to turbulence downstream of the singularity. 

In the study of vascular physiology, Nerem (1993) demonstrated the decrease of ceU 
proUferation and the alteration of cell morphology when vascular endothelium is exposed 
to laminar shear stress. This laminar blood flow induces endotheUal cells to exhibit 
a non-reactive phenotype. Davies et al. (2001) demonstrated in vitro that disturbed 
flows induce greater variabiUty of gene expression from cell to ceU than do undisturbed 
laminar flows. Microgravity experiments have shown that the low-turbulence culture 
environment (simulated with the NASA Bioreactor) promotes the formation of large, 
three-dimensional cell clusters and has provided insight into better understanding of 
normal and cancerous tissue development (Gao et al. 1997; Radin et al. 2001). Because 
high turbulence levels can damage ceUs (Davies et al. 1986), the determination and 
control of the turbulence levels that optimize expression of differentiated function and 
tissue development is of great importance. 

' At a larger vascular scale, the location of atherosclerotic lesions near branches, bifurca- 
tions, and curvatures of arteries has long been identified. For instance, Ku etal. (1985) 
found a strong correlation between flow disturbances and arterial susceptibility to the 
development of atherosclerosis plaque. Tsao et al. (1996) demonstrated that the effects of 
flow in inhibiting atherogenesis appear to be mediated in part by the endothelium-derived 
nitric oxide (NO). Bluestein et al. (1999, 2000) demonstrated the correlation between the 
generation of shed vortices downstream of an arterial singularity, and with both the local 
platelet deposition and the free emboli of platelet aggregates. These local hemodynamics 
are widely beheved to impact vascular diseases, from the development and progression of 
vascular lesions to the production of the thromboemboli and the cholesterolemboli that 
cause heart attadcs and strokes. 

For all of these reasons, but not limited to, the analysis of the intra-vascular blood 
flow behavior requires a much better understanding under simulated and physiological 
conditions, with the needed development of devices and tools to accurately determine 
the turbulence levels of blood flow in real-time. 
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For this purpose, an ideal system to study is the generation of turbulence downstream 
of a singularity: the generated turbulence is strong and, has in many various fields, 
important implications of increasing the accuracy of real-time detection procedures. 

In biology and medicine there are usually differences amongst individuals when study- 
ing the time evolution of physiological parameters of a non-pathological human group. 
Therefore, the use of dimensionless numbers to describe biological flow disturbances is of 
higher relevance in conducting biological research flow studies. Since a Reynolds' number 
{Re) is usually defined for steady flow through rigid tubes, it may not reflect the actual 
fluid behavior of intra-vasculai pulsatile flow. The Womersley' number (Wo) which in- 
cludes the pulsatile and frequency behavior of the flow is a better parameter, but has the 
same limitation as Re. Because biological fluid dynamics invariably involves the interac- 
tion of visco-elastic and active tissue with viscous incompressible non-Newtonian fluid, 
this interaction can not be neglected in biological fluid mechanics research and compu- 
tation of biological models, as pointed out by Peskin et al. (1995) with the immersed 
boundary method; and considered in their studies by Ye et al.  (1999). 

Since Leonardo Da Vinci's studies of cardiovascular systems by using a simple aortic 
glass model to simulate flow dynamics (Gharib et al. 2002), - 400 years ahead of Osborn 
Raynolds' famous pipe flow visualization studies -, the real-time detection of blood flow 
behavior has gained more and more importance. This requires non-invasive and safe 
vascular imaging techniques of the highest resolution in space and time. Since Schmidt 
et al. (1970), significant advances in ultrasonic flow measurements have been made. 
Ultrasonics are widely used in both medical and surgical areas (Cloutier et al. 1990), and 
this device demonstrated in fluid mechanics its utility where opaque flow fields preclude 
the use of optically-based diagnostic tools (Johari et al.   1998; Nowak 2002). 

When analysing a scientific image, the main goal is to describe it quantitatively. This 
goal is difficult to achieve without the use of mathematical tools because human interpre- 
tation can often be subjective. Recently, there has been increasing interest in the study 
of scaling behavior in irregular objects: the velocity field of fully developed turbulent 
flows (Farge et al. 1988; Meneveau 1991; Muzy et al. 1991; Frisch 1995; Ameodo et al. 
1995), financial time-series (Mantegna et al. 2000), telecommunication traffic (Abry et al. 
2002), medical time-series (West 1990), random walks associated with DNA sequences 
(Arneodo et al.  1996). 

Adapting the methodology of Farge (1992); Arneodo et al. (1995), and in order to 
analyze scaUng behavior and singularities in pulsatile blood flows as previously done by 
May et al. (2001a,b, 2002), the goal of this study is to use the wavelet signal processing 
strategy on bidimensional vascular data: 

• In part I, adapting the work of Farge (1992) k later Kailas et al. (1999), the basic 
methodology is outlined to examine the 2D wavelet transform of vascular flow images 
at various scales, especially when the images indicated the presence of intervals during 
which the blood flow pattern downstream of the lesion contains shedding vortices. Kailas 
et al. (1999) made this analysis fi-om images taken of a mixing layer fRoshko 1954- 
Bloor 1964). 

• In part II, adapting the work of Arneodo et al. (1995) & Haase (2000), the wavelet 
transform modulus maxima (WTMM) method is applied on the same data for extracting 
singularities of the velocity field by analyzing all vertical ID cross sections of each image 
(Figure 1). 
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Cross section Arterial wall 
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FIGURE 1. Turbulence induced by an ulcerated plaque located in a carotid artery and imaged 
by Doppler ultrasound (General Electric Corporation, LaConte  (2002)). 

2. Methods 
2.1. Ultrasound data used 

Ultrasound datasets were recorded upstream and downstream of an ulcerated atheroscle- 
rosis plaque located in the human carotid artery (LaConte 2002). The basic variable of 
the images, /(x) is the grey-scale intensity correlated with the blood flow velocity, and x 
is the two-dimensional position vector. The images were digitized with 512 x 128 pixels 
and 8 bit accuracy providing 256 grey levels of image intensity. 

2.2. The Fourier transform 

The Fourier transform has long been a principle analytical tool in various fields such as 
linear systems, optics, probabiUty theory, quantum physics, antennas, and signal analysis. 
This mathematical tool originally was used for analysis of stationary signals and systems. 
The Fourier transform, with its wide range of appUcations, like many other mathematical 
tools, has its Hmitations. For example, this transformation cannot be apphed to non- 
stationary signals. These signals have different characteristics at different times or space 
coordinates. The modified version of the Fourier transform, referred to as short-time (or 
time-variable) Fourier transform, can resolve some of the problems associated with non- 
stationary signals but does not address all the issues of concern. The Fourier transform 
is a classical tool for measuring the regularity of a function f{x) by investigating the 
asymptotic decay of its Fourier transform f{w) as lu —> oo. However, since all local 
information is unlocalized by the Fourier transform, the asymptotic decay can only give 
overall information about singularities within the interval considered. 

2.3. The wavelet transform 

By definition, wavelet analysis acts as a mathematical microscope which allows one to 
zoom in on the fine structure of a signal, or, alternatively, to reveal large scale structures 
by zooming out. Therefore, when a signal or a process contains some form of scale invari- 
ance or some self-reproducing property under dilatation, wavelets are useful in identifying 
them. The wavelet transform (WT) of a real valued function /, according to the analysing 
mother wavelet ip, is defined as the convolution product of the scaled and shifted mother 
wavelet ip with f{x) (GoupiUaud et al.  1984), 

+00 

T4f]{a,b) = -  f f{x)^i^^)dx,        (a,6GE,a>0) (2.1) 
a J o 
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FIGURE 2. The Mexican hat mother wavelet. 

The wavelet transform (WT) decomposes a signal j(x) £ L^{M.) hierarchically in terms 
of elementary components ip{^), which are obtained from a single mother function V'(x) 
by dilatations and translations. Here a denotes the scsJe parameter and b is the shift 
parameter. The crucial point is to choose iplx) to be well localized both in physical and 
Fourier space. In contrast to Fourier analysis, the WT does not lose information about 
the position of transient phenomena and irregular structures. In order to detect singular 
behavior one has to choose an analyzing wavelet ip{x) that is orthogonal to polynomials 
of up to order n. The first n moments of V'(x) are vanishing (Mallat et al.  1992). 

+00 

I' x''i){x)dx = 0,        (0 < A; < n) (2.2) 

2.4.  The Gaussian functions 

A very common way to build admissible wavelets of arbitrary order n is to successively 
differentiate a smoothing function. Confining to singularities, a family of real valued 
wavelets constructed from a Gaussian distribution IPQ{X) has proven to be very effective 
and has good scale-space locahzation, 

ipo{x) = e = P-»V2 d" 
^"(^) = T;:;:MX),      (^ e dx' 

(2.3) 

The mother wavelet adopted here is the second derivative of the Gaussian function: 
the Mexican hat (Figure 2), which was the first function used to computationally detect 
multiscale edges (Witkin  1983), 

V'(x) = (l-x2)e-(^')/2, (2.4) 

The wavelet transform is successfully applied to non-stationary signals for analysis and 
processing and provides new techniques which deserve special attention in the area of 
firactal analysis and synthesis since they can be used to extract microscopic information 
on their scaling properties. Fractals have a complex geometrical shape and are charac- 
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terized by a non-integer dimensionality defined as follows: the minimum nimiber N of 
balls of size £ required to cover the set completely behaves like, 

N{s) a -1,        (£ -^ 0) (2.5) 

where D is the fractal dimension. 
In this respect, every point is associated with a singular behavior. Fractals are invariant 

under a group of self-affine transformations including translations and dilatations which 
are the basic operations in wavelet theory. 

2.5. Detection of signal singularities 

A standard way of characterizing irregular distributions is to extract macroscopic in- 
formation about the underlying hierarchical structure and to statistically describe the 
scaling properties using concepts such as the generalized fractal dimensions D and the 
multifractal spectrum /(a). Wavelet analysis represents a generalization of the standard 
box-counting technique. It allows the estimation of the entire spectrum of singularities 
D{h) {h is the Holder exponent) of fractal distributions as well as functions. 

In order to locally characterize the irregularity of an object, one generally uses the 
notion of Holder exponent h. This exponent can be seen as a measvirement of the strength 
of the singularity behavior of a given function f{x) around a given point a; = XQ. It is 
defined as the greatest exponent h so, that / is Lipschitz ft at XQ, and ^o is a singularity 
called cusp with Holder exponent h{xo). For example, f{x) = V^ has a cusp at xo = 0 
with Holder exponent /i(0) = 1/2, the Heaviside function has a "jump"at XQ = 0 with h{0) 
= 0. In that sense, the Holder exponent generaUzes the notion order of differentiability 
and measures the strength of irregularities in the function or in its derivative. / is said 
to be Lipschitz h at XQ if and only if there exists a constant C and a polynomial P(x) 
of order smaller than h so that, for all x in a neighborhood of XQ (MaHat  1998), 

|/(x)-P(x-xo)|<C|x-xo^ (2.6) 

The higher the exponent h{xo), the more regular the function f. In the case where / is 
made up of an accumulation of singular behavior (which is the case in a fractal function), 
the direct estimation of h{xo) and the estimation of the singularity spectrum D(h) of 
a singular function /, requires the multifiractal formalism (Prisch 1995; Ameodo et al. 
1995), which provides a "global" method for estimating this singularity spectrum based on 
the computation of a partition function. It can be shown (Mallat et al. 1992) that for cusp 
singularities, the location of the singularity can be detected, and the related exponent 
can be recovered from the scaling of the WT along the so-called maxima line, converging 
towards the singularity. This is a Une where the WT reaches local maximum (with respect 
to the position coordinate). Connecting such local maxima within the continuous wavelet 
transform "landscape"gives rise to the entire tree of maxima hues. It incorporates the 
main characteristics of the WT: the ability to reveal the hierarchy of (singular) features, 
including the scaling behaviour. This Wavelet Transform Modulus Maxima (WTMM) 
tree has been used for defining the partition function based multifiractal formalism, 

Z(9,o)=^|T^[/](xi(a),a)|^ (2.7) 
i 

where q are the moments of the measure distributed on the WTMM tree. 
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FIGURE 3. Vortex street induced by an ulcerated plaque located in a carotid artery and 

imaged by Doppler ultrasound (General Electric Corporation, LaConte  (2002)). 
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FIGURE 4. Wake induced by an iilcerated plaque located in a carotid artery and imaged by 
Doppler ultrasound (General Electric Corporation, LaConte  (2002)). 
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Singularity spectrum 

FIGURE 5. Singularity spectrum of a vertical cross section, (analysing wavelet V'2). 

Arneodo et al. (1995) demonstrated that all the local maxima Xi{a) of |T^[/](x,a)| 
can be considered as a function of x and proved that, for a large class of fractal functions, 
Z{q, a) follows a power law scaling 

Z(g,a)~a^('\ 0+ (2.8) 

The Z{q, a) is the partition function of the q-th moment of the measure distributed 
over the wavelet transform maxima at the scale a considered and the exponents T{q) are 
related to the D{h) singularity spectrum (Figure 5) through the Legendre transform 

D{h) = ming{hq - r{q)). (2.9) 

Haase (2000) successfully applied the WTMM method to turbulent data from an 
axisymetric jet with helium at low temperature (Chabaud et al. 1994) previously used 
to analyze turbulent intermittency. The range of Holder exponent h was between 0 and 
0.8, with the most frequent exponent h found for the maximum of the spectrum close to 
the classical Kolmogorov value of 1/3. 
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3. Results 
3.1. First description of the ultrasound data used 

A Doppler ultrasound image of an ulcerated plaque located in the wall of a carotid artery 
is shown in Figure 1. The velocity blood flow is digitized with a lighter shade of gray 
scale. The real-time analysis of the blood flow behavior during each heart cycle, indicates 
the presence of intervals during which the blood flow pattern downstream of the lesion 
contains shedding of vortices. Upstream of the lesion, the flow is radially uniform except 
in the boundary layer near the wall of the artery. As reported by Owsley (2000), the flow 
of the plaque is wave-like with a velocity variation wavelength that can be related, under 
ideal static lesion symmetry conditions, to the Strouhal vortex shedding rate frequency, 
/^ = S{vp/dp){Ap/Ac)'^-^. Here 5 = 0.2 is the Strouhal number (5 = f^.dp/vp), Vp is the 
average upstream flow velocity, dp is the proximal artery diameter, Ap and Ac are the 
proximal and lesion-constrained artery cross sectional areas respectively (Owsley 2000). 
In practice, the lesion morphology is neither symmetric nor static in time. For dp = 
3.18 mm, using the ranges of values 30 < Vp < 60 cm/s and 2 < (Ap/Ac) < 9, the 
vortex shedding frequencies are ranged between 50 and 1000 Hz (Owsley 2000). This 
downstream turbulence dissipates blood flow kinematic energy to the artery wall through 
boundary layer effects and is able to promote morphological changes of the ceUular tissue 
surrounding the artery. Using these velocity values, the estimated Reynolds number in 
two smooth and rectilinear pipes with a diameter of 3 to 5 mm is respectively 239Re^i^ 
and 795Re„.»- With p = 1060 kg/m^ and // = 0.004 kg/{m.s). 

In a purely oscillating case, according to Hino et al. (1983), the oscillating flow remains 
stable for Re < 400, for 400 < Re < 800 the flow undergoes a periodically transition 
between laminar and turbulent states; finally, it becomes fully turbulent for Re > 800. 

3.2. Part I: the 2D wavelet transform 

The WT was used on ultrasound images taken at the middle of a heart cycle when the 
existence of blood flow coherent structures, mostly generated downstream of a singularity, 
is unambiguous. Figures 3 and 4 depict two different states of the shedding vortices 
produced and the WT at three different scales (0.1, 2 & 6). In addition, the isolines of 
each WT were represented to clarify our purpose. At the smallest scale a = 0.1, the fine 
scale structure is apparent and in comparison with the raw data the coherent structmres 
are easily identified. However as a increases we can easily identify, at each scale, the 
regions of stronger and weaker gradients. In Figure 3 the vortices (white cross) and the 
connectedness between them are clearly shown for the scales larger than a = 2. In Figure 
4 the connectedness of the two main wakes are evident in the raw data. Again for scales 
larger than o = 2, a discontinuity is observed between the two main wakes. The same flow 
characteristics were seen for aU the images taken at the middle of a heart cycle. These 
results demonstrated that the WT captures the profile of the sharp density gradients 
more clearly than the raw data. 

3.3. Part II: singularity signal analysis in ultrasound images 

The WTMM method was applied to the 512 vertical cross sections of each image (Figure 
1) in order to compute the singularity spectrum (Figure 5) of each ID signal cross section. 
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FIGURE 6. 3D representation of the singularity levels calculated for all the frames. 
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FIGURE 7. Means and SEM of the singularity levels calculated for all the frames. 
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A numerical code (May et al. 2001b) $ was used to compute the variation of the 
Holder exponent h and of D{h). These computations allowed the representation of the 
singularity level of each ID signal cross section as a function of the position X and of the 
time/frame (3D graphical representation of Figure 6). The means of the singularity level 
of each ID signal cross section in function of the position X are shown in Figure 7 with an 
ultrasound frame in the background. As observed by Owsley (2000), after visualizing the 
ultrasound data, Figure 6 and Figure 7 showed the constant decrease of the singularity 
level for the upstream region over the plaque for aU frames. This singularity decrease is in 
good comparison with the turbulence decrease of a boundary layer over a two-dimensional 
bump, experimentally observed by Webster et al.  (1996). 

4. Future plans 
The present study has employed a numerical analysis method which is used in other 

research areas in studying fluid mechanics. In particular, singularity information was ex- 
tracted from one- and two-dimensional data by this method. This wavelet based method 
is able to capture the real-time complex biological flows behavior and for instance to eval- 
uate the effect of pharmacological drugs on hemodynamics, and thus its validity should 
be checked using other flow data behavior taken from simulation and/or experimental bi- 
ological fluid mechanics. Future work will focus on the validation of this wavelet analysis 
method with simulation data of biological fluid mechanics. 
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Flow around cactus-shaped cylinders 

By Sharon Talley and Godfrey Mungal f 

1. Motivation and objectives 
This study combines biology and fluid mechanics to understand mechanisms that or- 

ganisms use to cope with flows in their environment. Because organisms are selected in 
and by the flow conditions of their environment, their study can provide insight into 
novel mechanisms of controlling flow given certain constraints such as body size, basic 
shape (bluff vs. streamhned), and structural properties. Large desert succulents, such as 
the saguaro cactus, Camegiea gigantea (Cactaceae), experience high wind velocities in 
their natural habitat and have converged on a common surface geometry of longitudinal 
cavities and spines (figure la). At the highest wind velocities in their natural habitat 
and when in danger of being uprooted by wind forces, saguaros with typical diameters of 
0.5 m experience flows at Reynolds number (Re) up to 10^. Being stationary organisms 
that must cope with high wind speeds from all directions, their shape is constrained to a 
cylindrical bluff body, and they hkely rely on their complex surface geometry to affect the 
surrounding flow. Given that the shape and surface characteristics of an object influences 
the surrounding airflow, natural selection by wind may favor bluff body morphologies that 
reduce forces exerted by wind gusts (i.e. drag and fluctuating side-force). In this paper, 
we address the complex surface geometry of saguaros by experimentally examining the 
effect of longitudinal cavity depth on flow past circular cyUnders (iZe w 2 x 10^ to 2 x 10^). 
Because of the broad nature of this interdisciplinary research, we provide background in- 
formation on the physical attributes of saguaros, evidence of wind as a natural selective 
agent and flow around circular cylinders. 

1.1. Saguaro background 

The size, shape, surface characteristics and material properties prescribe a struct\n:e's 
(e.g. saguaro) abiUty to withstand high flow velocities. EVom a fluid mechanical per- 
spective, saguaros can be viewed as giant cylindrical structures having complex surface 
geometry and a hemispherical free end. The main cyUndrical trunks of adult saguaros 
reach heights of 8 m to over 15 m (Hodge 1991) and diameters of 0.3 m to over 0.8 m 
(Benson 1981). Age, climatic conditions and soil properties govern the size of saguaros; 
therefore, saguaro size can differ with environment. Information from one study area 
suggest that aspect ratios {height/diameter; h/d) of saguaros are height/ age dependent 
(Niklas and Buchman 1994). Saguaros taller than 4.5 m in height have (h/d) ratios be- 
tween 12 and 23 and are relatively more slender than shorter saguaros, which have aspect 
ratios between 5 and 12 {h/d). 

The complex surface geometry of saguaros is caused by longitudinal cavities and spines. 
Ten to 30 v-shaped longitudinal cavities (ribs) span the length of the trunk (Hodge 1991). 
The number of cavities depends on the trunk diameter; new cavities are added or deleted 
(figure la) to maintain a firaction cavity depth {l/d - depth of the cavity divided by the 
diameter of the cyhnder) of 0.07 ± 0.0015 at approximately 1.5 m in height (Geller and 

t Mech. Engg. Dept, Stanford University. 
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(a) (c) 

FIGURE 1. (a) Adult saguaro trxrnk showing the addition of cavities, (b) spines, and (c) 
saguaro forest 

Nobel 1984). Cavity depth may increase higher up the trunk (personal observations). 
Cavity junctures (apices) have staggered clusters of 15 to 30 spines 2.5 to 7.6 cm long 
(Benson 1981; figure lb). 

Structural properties determine its load capacities and other factors that can interact 
with flow phenomena (natural resonance frequency and ability to flex causing aeroelastic 
responses). The root to soil interface likely determines a saguaxo's load capacity, because 
toppled saguaros ususdly are found uprooted rather than broken at the trunk (see Talley et 
al. 2001 for structural strength of saguaro tissue). Saguaros have a shallow root system, 
which provides poor root anchorage and is believed to allow the toppling of saguaros 
during strong winds (Hodge 1991). While saguaros greater than a 1 m in diameter, may 
have natmral frequencies between 4 and 10 Hz (Niklas 2002, personal communication), no 
studies have reported the forces required to topple saguaros, their behavior and flexibility 
in wind or their resonance firequency in soil. A morphologically similar species to the 
saguaro is the Mexican cardon, {Pachycereus pringlei), which has a more extensive root 
system of a deep bayonet-like central root and shallow lateral roots (Niklas et al. 2002). 
Anchorage is believed to be primarily provided by the central root system, which does not 
grow proportionately in girth or depth with growth of the trunk. Niklas (2002) argues that 
in an environment where water is extremely limited, as the card6n increases in size the 
root's function may shift more towards water absorption than anchorage because death 
by dehydration is more likely than toppling by wind. However, the likelihood of being 
toppled by wind depends on wind occurrences in their habitat, and other mechanisms 
may be responsible for their ability to withstand high wind velocities. 

For wind to be a natural selective agent on saguaros, saguaros must be exposed to 
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wind, high wind velocities must occur in their habitat, and wind forces must affect 
their reproductive success. High wind velocities occur within the distribution of saguaros 
and frequently enough to affect their reproductive success. During a 9-year period, the 
maximum wind velocity recorded was 38 ms~^, and velocities exceeding 22 ms~^ occurred 
almost every month (Bulk 1984; For a 0.5 m diameter saguaro, these wind velocities 
give Re of 1.3 x 10® and 7.3 x 10^, respectively). The saguaro cactus can live for 150 
years and requires 30 to 50 years to attain reproductive maturity, suggesting that high 
wind velocities need only occur every 30 to 50 years to be an important selective agent. 
Saguaros are Ukely exposed to winds because their desert habitat supports few if any 
other tall plants to provide shelter from the wind (figure Ic). 

Substantial circumstantial evidence suggests that wind affects the reproductive success 
of saguaros by toppUng them and causing their premature mortality (figiure Ic, Benson 
1981, Alcock 1985, Pierson and Turner 1998). It is likely that most of the saguaros that 
are toppled are large plants; however, enough young saguaros are toppled by wind to 
be documented (see figure Ic in Talley et al. 2001). Information on the occurrence of 
toppling events and on the wind velocities required to topple saguaros is lacking. The 
best-documented cases of mortality due to windfall are briefiy mentioned in two different 
papers, (i) Prom 1941 to 1944, 2% of the saguaros in a 130 ha area were toppled by 
wind, and in 1945, 7% of the remaining saguaros in the same 130 ha area were toppled 
(Steenbergh and Lowe 1983). (ii) In August 1982, over 140 saguaros in a 15 ha area were 
toppled by wind velocities reported to be grea;ter than 28 ms~^ (Pierson and Turner 
1998). The fact that some saguaros are toppled by gusts, while many others remain 
standing is consistent with the natural selection scenario. 

1.2. Flow around circular cylinders 

Much is known about flows past circular cyUnders, and below we provide a short review 
of flow phenomena relevant to the fluid mechanics of the saguaro's shape. Saguaros have 
the shape of a circular cylinder augmented with longitudinal cavities (the effect of spines 
is a future topic) and a hemispherical free end. For simplicity, we will focus flow around 
two-dimensional cylinders and then discuss free end effects. For an introduction to basic 
fluid mechanics, see White (1994, chapter 7). 

Drag coefficient, Co, curves of spheres and cyhnders have four distinct Re flow ranges 
(figmre 2a), which are distinguished by changes in CD caused by boundary layer phenom- 
ena including separation and transition from laminar to turbulent flow (Roshko 1961, 
Achenbach 1977, Farell 1981). In the subcritical regime, the boundary layer is laminar 
and separates at an angle from the front stagnation point of about 80°. In the critical 
regime, CD drops as the laminar boundary layer separates further downstream (to about 
100°). The lowest Co on the curve, occurring within the critical range, is the critical Re 
(figure 2a). At the critical Re, turbulent reattachment occurs, causing a bubble which 
delays separation (to about 140°). In the supercritical regime, CD rises as the reat- 
tachment bubble shrinks and moves upstream. In the transcritical regime, CD is almost 
independent of Re and the boundary layer becomes turbulent before separation. 

Comparisons of CD curves of smooth and uniformly rough cyhnders reveals that rough 
cyhnders have CD curves to the left of smooth cyUnders and, therefore, experience the 
critical range at lower Re (Achenbach 1971). Roughness promotes turbulent transition 
(surface roughness size is quantified by the parameter k^/d, the height of the roughness 
divided by the diameter of the cyUnder), and generally, the greater the roughness, the 
greater the shift of the CD curve to the left. Although a greater degree of uniform surface 
roughness promotes an earlier critical Re, it is accompanied by a smaller drop in CD and 
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FIGURE 2. (a) Four ranges of flow past circular cylinders and (b) Drag coefficient of circular 
cylinders differing in aspect ratio of in terms of (Zdravkovich et al. 1989). 

a shorter critical Re range. In addition, uniformly rough cylinders often have higher CD 

than smooth cylinders in the postcritical ranges. Therefore, the Co reduction afforded 
by uniform surface roughness occurs for a very hmited Re range and at a cost of higher 
CD in the postcritical regime. 

Distributed surface roughness and complex surface geometries (i.e. dimples) can affect 
the shape of the Co curve without the same limit in the range of CD reduction and cost 
of higher CD in the postcritical regime as occurs with uniformly rough cylinders. For 
example, distributed strips of roughness on cylinders promotes early transition without 
a rapid rise in CD in the supercritical range (Nakamura and Tomonari 1982). Complex 
surface geometry, such as dimples on a cylinder (similar to those on a golf ball; Bearman 
&c Harvey 1993), also induce early transition and extend the critical range. The dimpling 
geometry may be effective at tripping the laminar boundary layer while inhibiting the 
thickening of the turbulent boundary layer (Mehta and Pallis 2001). Thus, CD depends 
not only on the size of surface roughness but also on the shape (geometry) and dis- 
tribution of surface roughness. Although many surface modifications have been studied 
to reduce drag on circular cyUnders, to our knowledge, none have examined spanwise 
V-shaped cavities with l/d greater than 0.035. Our study is motivated by the saguaro 
cactus and other tall succulents that have a l/d of 0.07. In this paper, we compare un- 
steady drag and lift of smooth and uniformly rough cylinders {ks/d = 1.74 x 10~^ and 
8.41 X 10-3) tQ cylinders differing in cavity depth {l/d = 0.035, 0.07, 0.105). 

Cylinders with free ends generally have lower Co than two-dimensional cylinders (fig- 
ure 2b; Zdravkovich et al. 1989). The effect of free ends on CD depends on aspect ratio. 
For l/d < 1, the lower the aspect ratio the greater the effect of the free ends. For cyUn- 
ders with both ends free, free-end effects appear to be beneficial for aspect ratios (h/d) 
< 30. This may also be the case for cylinders with one free end; Fox, Apelt, and West 
(1993) reported that at an aspect ratio equal to 30 there is still a considerable decrease 
in the mean and fluctuating forces. The average aspect ratio of saguaros is unknown; 
however, aspect ratios Ukely range between 5 and 23 {h/d). Therefore, the effect of free 
ends should not be discounted. The saguaro has one free end that is hemispherical. Note 
that in figure 2b, hemispherical ends give a larger decrease in CD than flat ends. Cavities 
on the hemispherical free end, such as those on a saguaro, may provide even a larger 
decrease in CD than a smooth-hemispherical free ends. 
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1.3. Significance 

With our interdisciplinary approach, we address the fluid mechanics of a novel surface 
geometry and fundamentals in biology. This is the first study to our knowledge to ex- 
amine how spanwise v-shaped cavities {l/d up to 0.105) can affect flow around cylinders. 
Research on the effect of surface augmentation on flow around bluff bodies is impor- 
tant to many apphcations, such as chimneystacks, towers, and marine risers. In biology, 
fundamental concepts in evolutionary ecology are addressed by examining whether nat- 
ural selection by wind has optimally shaped stationary organisms to reduce potentially 
damaging wind forces (drag and fluctuating side-force). Surprisingly few have studied 
the fluid mechanics of biological organisms, especially terrestrial and stationary organ- 
isms, with bluff bodies. No studies have reported accounts that bluff-bodied organisms 
reduce drag by surface roughness (Vogel 1981). Surface roughness has been argued an 
unlikely adaptation to control drag, because the reduction in CD afforded by the surface 
roughness is accompanied by an increase in Co at higher Re (Denny 1988 and Vogel 
1981). However, an increase in CD in a Re range that is rarely, if ever, experienced by 
the organism in question should have no effect on its evolution. Moreover, complex sur- 
face roughness affects the CD curve differently than uniform roughness, and other forces 
and flow phenomena (i.e. drastic changes in CD, fluctuating side-forces, and vibration 
frequencies) may be important but overlooked selective agents on the shape of organisms. 

2. Experimental arrangement and methods 
2.1. Test cylinders 

Circular cyUnders 76.2 cm in length (cylinders spanning the tunnel) and 57.5 cm in 
length (flat-capped, free-ended cylinders) were manufactured from RenShape 460 mod- 
ehng board. All cylinders were 9.98 cm in diameter. Six surfaces were examined: one 
smooth, two uniformly rough (ks/d = 1.74 x IQ-^, 8.41 x IQ-^), and three different 
depths of 24 spanwise v-shaped cavities {l/d = 0.035, 0.07, and 0.105). Uniform rough- 
ness, ks/d = 1.74 X 10-3 a,nd 8.41 x 10"^, was provided by commercial 100 and 36 grit 
sandpaper, respectively. Sheets of sandpaper were attached to the smooth cyhnder with 
double-sided adhesive tape, adding a thickness less than 2 mm. The sandpaper spanned 
the cyUnder to ±130° with respect to the flow direction (0°). The 24 cavities on the 
cyhnder were 15° apart cut at included angles of 124°, 82.5°, and 60° for the 0.035, 0.07, 
and 0.105, respectively. 

2.2. Experimental arrangement in wind tunnel 

Figure 3 shows the experimental configuration. Experimental measurements were per- 
formed in a low-speed blower tunnel with a test section 76.2 cm high by 76.2 cm wide at 
flow velocities from 4 to 29.5 ms"^ (iie « 2 x 10* to 2 x 10^). Geometric blockage was 
13% (d/ width of the test section). In all experiments, cylinders were mounted vertically 
between aluminum endplates (3.35 mm thidc). To eliminate direct contact between end- 
plates and cyUnders, endplates were fixed 2.54 cm below the roof and 2.54 cm above the 
floor. Endplates were 8d long by 7d wide with a distance between the cylinder axis and 
the leading edge of 3.5d (Szepessy 1994). Aspect ratio between the endplates was 7.08 
(/l/d) for cyhnders spanning the tunnel and 5.47 {h/d) for cylinders with free ends. The 
portion of all cylinders that were between the endplate and the closest wall (i.e. 0.066 for 
cyUnders spanning the tunnel and 0.033 for free-ended cyUnders) had a smooth surface, 
and their contribution was neglected in the force calculations. 
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2.3. Pressure distribution 

Cylinders were equipped with at least 16 static-pressure ports of less than 1-mm diameter. 
At 19.1 cm, 31.8 cm, 44.5 cm, and 57.2 cm from base of the cylinders, there were a series 
of four static ports located 90° apart from one another. For cylinders with cavities, 
the 16 static ports were located on the middle of the cavity wall. Cavity cylinders were 
equipped with two additional static ports 44.5 cm from the base, one of which was located 
on the apex of the cavity juncture and the other in the trough (valley) of the cavity. The 
three static-port locations along the cavities were used to determine pressure differences 
with the different orientations of the cavity to the flow. Only the cylinders spanning the 
tunnel were measured for pressure distribution. Cylinders were mounted on a turntable 
and rotated 15° between sampling periods. Pressure measurements were made using a 
differential pressure transducer at a sampling rate of 500 Hz for a total of 150,000 samples 
for each velocity. 
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2.4. Direct force and vortex shedding measurements 

Force measurements were obtained directly using a dynamic multi-component force trans- 
ducer (MC3A-6-250, Advanced Mechanical Technology, Inc, Watertown, MA). The cylin- 
ders were attached to a metal plate that was directly attached to the force transducer. 
The transducer was rigidly attached to the tunnel. The MC3A-6-250 transducer has six 
channels; three channels measure forces in the three directions (drag, lift, and weight) 
and three channels measure moments about the different directions. Channels have a 
2% or less crosstalk which had to be corrected for due to the cylinder length creating 
large moments, and hence, causing considerable errors in force measurements. Correction 
factors were obtained through comprehensive calibrations using a pulley system and a 
series of weights. Wires were attached to the cylinder at three or more different span- 
wise locations (to correct for moment crosstalk contribution) for both the drag and Uft 
directions. 

The MC3A-6-250 transducer is not rigid and allowed the cylinder to displace (approx- 
imately 1 cm) when under maximum wind loads. To prevent large amplitude vibrations 
due to vortex shedding, the free end of the cylinders spanning the tunnel (ends were 
outside the tunnel roof; figure 3), was attached to a floating dampening system. No 
corrections were made for damping in the force calculations. No damping system was 
employed for free-ended cylinders (see discussion). Using a spectrum analyzer, we mea- 
sured the resonance fi-equencies of the cylinders. Cylinders spanning the tuimel had a 
natural frequency of 8 Hz, and the flat-capped cylinders had a natural frequency of 20 
Hz. 

The mounting mechanism did not allow different orientations of the cavities to the 
flow, so all cylinders had the cavity apices facing the flow. A total of 150,000 samples 
at a sampling rate of 500 Hz were measured for up to 30 different velocities (from 4 to 
29.5 ms~-^) for each cylinder. Velocity was obtained using a Pitot-static tube attached 
to a differential pressure transducer. Vortex-shedding frequency {f) was measured by 
counting the peaks of the fluctuating lift forces and presented as the Strouhal number 
(S't = f*d/U, where U is the velocity). Blockage corrections were made for the Cjr, and 
velocity calculations using formulas from Allen and Vincenti (1944). Blockage corrections 
were not applied to the lift coefficient, CL- The root-mean-square (r.m.s.) lift coefficient, 
CLI was calculated using the r.m.s. of the lift fluctuations {L'). 

3. Results 
3.1. Pressure distribution 

Pressure distributions at Re = 110,000 for the cylinders spanning the tunnel are shown 
in figure 4a. There is greater pressure recovery for cylinders with cavities than for the 
smooth and rough cylinders. The cylinders with cavities have greater negative pressures 
on the sides of the cylinder. Pressure recovery appears to increase with increasing cavity 
depth while the negative pressures on the sides of the cylinder appear not to be affected 
by cavity depth. The pressure distribution depends somewhat on the orientation of the 
cavity to the flow. When the cavity trough faced the flow, static pressures were very 
similar to those when the wall faced the flow. Conversely, when apex was facing the flow, 
static pressures differed from those when the wall or cavity trough faced the flow. The 
largest differences were for pressures on the front and sides of the cylinders, figtire 4b 
shows the pressure distribution at different locations along the cavity for the 0.07 l/d 
cylinder. 
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FIGURE 4. (a) pressure distribution of all cylinders at Re 110,000 and (b) pressure distribution 
from different locations along the cavity for the 0.07 l/d cylinder. 

3.2. Drag, lift and vortex shedding 

CD VS. Re for the test cylinders are shown in figure 5. Note that Co values were calculated 
using only the portion of the cylinder between the endplates (neglecting the smooth 
portions of the cylinder between the endplate and the nearest wall) and, therefore, the 
CD values are higher than those reported elsewhere. However, trends in the magnitude 
of the drop in CD and the critical Re for the two uniformly rough cylinders are in 
close agreement with those reported in Giiven, Farell, and Patel (1980). The cavity 
cylinders have no obvious critical Re. At the highest Re, the CD for the cavity cylinders 
asymptotically approaches CD values of 1.13,1.09, 1.04 for the 0.035, 0.07, and 0.105 l/d 
cylinders, respectively. 

Cy plotted against Re is shown in figure 6a. The C/,' values for a smooth cylinder 
are in agreement with those reported in Norberg (2001). The cavity cylinders had lower 
values of CL' than the smooth and the kg/d = 8.41 x 10~^ cylinder. The cavity cylinders 
had lower values of CL' than the ka/d = 1.74 x 10"^ cylinder from Re of 2.0 x 10^ 
to 1.0 X 10^. The ks/d = 1.74 x 10"^ cylinder had the lowest CL' values from Re of 
1.2 X 10^ to 1.6 X 10^. For the two uniformly rough cylinders, the lowest CL' value 
corresponds to their critical Re. Plots of unsteady drag and lift as a function of time (1 
s) for different Re, show that variation is a function of vortex-shedding frequency and the 
natural frequency of the model. For all the cavity cylinders and the k^/d = 1.74 x 10~^ 
cylinder, the variation in drag and lift was dominated by the vortex-shedding frequency. 
Conversely, for the smooth and ka/d = 8.41 x 10~^ cylinder, the variation in drag had a 
greater amplitude of lower frequencies that mirrored the natural resonance frequency of 
the model (data not shown). St plotted against Re for the test cylinders is shown in figure 
6b. There is little variation in St with Re for all cylinders. The cylinders with cavities 
have slightly higher St from /2e 2 x 10^ to 6 x 10^. No trends with CD and C^i curves 
were obvious. 

3.3. Free-end effects 

Drag coefficients of flat-capped cylinders were less than their corresponding two dimen- 
sional cylinders (figure 7a); however, the trends in CD curves for flat cylinders were 
similar to the trends of their corresponding two-dimensional cylinders. The flat-capped 
cylinders had no damping system. Consequently, cylinders experienced oscillations axis- 
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ing from the lack of stiffness in the force transducer. The large amplitude vibrations of 
the resonance frequency likely affected the CL' curves (figure 7b) and vortex shedding. 

4. Discussion 

4.1. Pressure distribution 

The greater pressure recoveries for cylinders with cavities than for smooth and rough 
cylinders suggests a decrease in drag for cylinders with cavities. The pressure recoveries 
differed slightly with location of the static port along the cavity and orientation of the 
cavity to the flow. When the apex of cavity juncture faced the flow, there were greater 
negative pressures on sides of the cylinders and slightly less pressure recovery, indicating 
slightly higher drag. 

4.2. Drag, lift and vortex shedding 

In general, an increase in cavity depth causes a decrease CD. Over the entire Re range (2 x 
10* to 2 X10^), the cylinders with cavities had lower CD values than the smooth cylinder. 
Conversely, before their critical range, both uniformly rough cylinders had higher CD 

values than the smooth cyHnder. The cylinders with cavities had lower CD values than 
the rough ks/d = 8.41 x 10~^ cyhnder with the exception of small Re range from 5 x 10* 
to 7 X 10* where all had equal values. For Re up to 1.2 x 10^, the cavity cyUnders had 
lower CD values than the k^/d = 1.74: x 10~^ cyhnder. Although roughness, ks/d = 
1.74 X 10~^, caused a larger CD reduction at higher Re, cavities induce a lower CD at 
lower Re and the reduction is sustained as CD is almost independent of Re. Analogous 
to surface roughness, the cavities likely serve to trip turbulent transition but at an lower 
Re. The flat curves of the cavity cyUnders have no obvious critical Re, which suggests 
that the transition to turbulence occurred at Re less than 2 x 10*. The fact that CD 

does not drop rapidly with Re (as it does for the uniformly rough and smooth cyHnders) 
may be biologically important to saguaros because rapid changes in force can damage a 
structure. The extent of the CD reduction at higher Re remains unanswered. We suspect 
that the cavities have flow benefits up to Re on the order of 10®, because this range of 
CD reduction likely corresponds to potentially damaging Re that saguaros commonly 
experience in their natural habitat with a possible added safety factor for those rarer, 
higher velocity gusts (30 ms~^). For example, if a 0.5 m diameter saguaro commonly 
experiences gusts of 22 ms~^ and is likely to experience a top gust of 30 ms~^ at least 
once every 30 years, the CD of saguaros is likely to have CD reductions extending to 
7 X 10^ and possible further. 

CD values of saguaros may be influenced by factors not examined in this study. De- 
pending on the orientation of the cavities to the flow, the CD values for cavity cyhnders 
Hkely diflFer somewhat from those reported in figure 5. When the cavity or cavity walls 
are facing the flow compared to the apex facing the flow, there is less negative pressures 
at the sides of the cyUnders and base pressure recovery is sUghtly better. Since we tested 
only with cavity apices pointing into the flow for all cavity cyUnders, the CD values may 
be somewhat overestimated. We also expect that axial flow and angle of attack may be 
important factors in the drag reducing capabiUty of cavities on saguaros. It is conceiv- 
able that the cavities induce axial flow (which may be induced from the free end). For 
cyUnders spanning the tunnel, axial flow was most likely inhibited because cavities were 
filled in at the ends of the cylinders making the cyUnders smooth between the endplates 
and the closest waU. VisuaUzation experiments carried out in a low-speed smoke tunnel 
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suggest that longitudinal cavities affect axial flow and the symmetry of vortex shedding 
(Talley et al. 2001). 

For the entire Re range, the cavity cylinders had a lower magnitude of fluctuating 
side-force than the smooth cylinder, and this was almost always the case for the ks/d 
= 8.41 X 10~^ cylinder. For Re up to 1.1 x 10^, the cylinders with cavities had a lower 
magnitude of fluctuating side-force than the kjd = 1.74 x 10"^ cylinder. The abiUty to 
dampen fluctuating side-forces may be particularly important in keeping saguaros upright 
since large fluctuations in forces may break or dislodge roots. Variances in the unsteady 
drag and fluctuating side-forces correspond to the vortex shedding. All cylinders were 
attached to the same damping system and corrections were not made for damping and 
differences in the weights of the cylinders. The natural frequency of all cylinders was « 8 
Hz and resonance contributed sUghtly to variations in the unsteady drag and fluctuating 
side-forces. For the cavity cyhnders and the k^/d = 1.74 x 10"^ cylinder, the natural 
frequencies were less evident in the waveforms of the unsteady drag and fluctuating side- 
forces. The differences in ampUtudes at resonance frequencies excited by vortex shedding 
needs to be investigated further. 

4.3. Free-ended cylinders 

The reduction in drag due to free-end effects is Hkely due to the low aspect ratio of the 
flat-capped cylinders (5.5 h/d). In nature, aspect ratios of saguaros likely fall between 5 
and 23 {h/d). Free-end effects on drag have been shown to be important for aspect ratios 
(h/d) < 30 (Zdravkovich et al. 1989), suggesting that end effects may be important for 
saguaros. Furthermore, hemispherical ends, such as those on saguaros, are likely to have 
even a greater effect on drag reduction (figure 2b). Longitudinal cavities may promote 
axial flow (Talley et al. 2001) and hemispherical caps with longitudinal cavities may 
cause even a further reduction in drag and fluctuating side-forces. This will be addressed 
in future studies. 

Results for the flat-capped cylinders were obtained without a damping system. Recall 
that the force transducer used for the measurements lacks stiffiaess, allowing the cylinder 
to vibrate. In order to reduce structural vibration interactions with vortex shedding, a 
damping system needs to be employed. For the free-end cylinders, it is difficult to attach 
a damping system without affecting the flow conditions at the free end. Several attempts 
were made to control vibrations without affecting flow around the free end, but none 
were successful. We lowered the natural frequency of the model by filUng the model with 
lead and copper; this brought the natural frequency down from 20 to 10 Hz; however, 
the amphtude was stiU great enough to interfere with the measurements. Next, we tried 
elastic dampers by making rubber, neoprene, and cork gaskets that varied in thickness; 
however, the benefit afforded by the elastic damping was counteracted by hysteresis 
effects. We also attached a damping system to the sides of the cyhnder using piano wires 
that were pulled tight with weights (figure 8a). This added stiffness to the Uft direction, 
but did not greatly improve the amplitude of the resonance vibrations. We stiffened the 
same system by using thicker wire in the tunnel and rods outside the tunnel, but this 
allowed only marginal improvement in the lift direction and no improvement in the drag 
direction. 

5. Future studies 
A new damping system will be employed to control natural resonance (figure 8b). 

Because the damping system will affect flow around the free end, experiments will be 
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FIGURE 8. Damping systems (a) with wires and weights and (b) with rod from ceiHng of 
tunnel. 

performed with and without a damping system. Further work is required to assess the 
effect of longitudinal cavities in the range of Re relevant to the saguaro as well as with 
models that allow axial flow (i.e. hemispherical caps). Future experiments will obtain CD 

curves over a range of Re from 2 x 10'* (for computational comparisons) to 1 x 10^ (limit 
of wind velocities in the saguaxo habitat) and will include the effect of hemispherical caps 
and spines. Research may also include angle of attack, flexibility of the body and vortex 
induced vibrations. 

Much about the physical characteristics of saguaros and their behavior in the wind 
remains elusive. Simple field measurements of aspect ratio and longitudinal changes in 
cavity depth need to be made. For structural interactions with wind, the natural fre- 
quency of a saguaro cactus needs to be measured in their natural habitat (sandy and/or 
rocky soils) both under dry and wet conditions. Saguaros may have mechanisms to avoid 
vortex shedding frequencies coming into resonance with the natural bending frequencies. 
Simple video recordings of the saguaro during the monsoon, will provide information on 
the behavior of the saguaro in high wind velocities. Structural deformations and motion 
of the saguaro in wind may add or alleviate forces caused by the wind. Furthermore, 
bending of the saguaro stem in the wind may increase axial flow in cavities and my 
alleviate pressure recovery at the base. 
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Numerical simulation of turbulent polymer 
solutions 

By   Y. Dubief 

1. Introduction 
Drag reduction using polymer additives in wall-bounded ilows poses many challenges 

to am understanding of turbulence and polymer dynamics, due to the large spectrum of 
scales involved. Up to 80% of drag reduction can be obtained with ultrardilute solutions 
of polymers with high molecular weight, for which each molecule is several orders of 
magnitude smaller than the smallest turbulent scale of the flow. Owing to this range of 
scales, numerical simulations as the ones presented here can tackle such flows only by us- 
ing a continuum model for the polymer dynamics (Sureshkumar et al. 1997). The validity 
of the most popular models was assessed by comparing the evolution of polymer stress 
with Brownian dynamic (BD) simulations in simple shear, extensional or rotational flows 
(Herrchen & Ottinger 1997) but not in turbulent flows. For the latter, the validation has 
so far been limited to qualitative comparisons of tvurbulent statistics with experimental 
data, and only, to the knowledge of the author, for small drag reductions. Even though 
the agreement of the existing simulations is good, the extension of this type of com- 
parison to higher drag reduction is therefore necessary, but not sufficient. It remains to 
be demonstrated that the polymer dynamics predicted by the model is consistent with 
corresponding BD simulations. The present paper uses, for one of the very first times, 
the two types of comparison to discuss the limitation of the mmierical schemes used to 
solve the model. 

For drag-reduced flows with polymers, turbulent statistics have been extensively char- 
acterized by experiments. Thus Waxholic et al. (1999) established the existence of two 
distinct statistical regimes. For a given polymer molecule, the mean-velocity profile ex- 
periences an upward shift of its log-law region for the smallest concentration, up to a 
drag reduction (DR) of the order of 40%. This regime is referred to as the Low-Drag 
Reduction (LDR) regime. A further increase in concentration leads to a change in the 
slope of the log law which defines the High-Drag Reduction (HDR) regime. As more 
polymers are added, the flow tends toward an asymptotic state, called the Maximum 
Drag Reduction (MDR) regime, for which drag is slightly higher than the laminar state 
(Virk & Mickley 1970). The components of the Reynolds stress tensor uiuj decrease in 
magnitude when scaled with outer variables (here, the centerline mean velocity of the 
Poiseuille flow Uc and the channel half-width h) as DR increases. Yet the diminution of 
the rms u' of the streamwise velocity fluctuations is small compared to v', w' or uv and 
it results in an increase of the maximum of u'"*" in the wall region (+ denotes the scaling 
by inner variables based on the skin-friction velocity UT and the viscosity v). LDR pro- 
duces the largest maximum values of u'"^ whereas the peak seems to reduce back to the 
DR = 0% case at HDR and MDR. In this latter regime, Warholic et d. (1999) measured 
a vanishing Reynolds stress -wj as MDR is approached. The authors concluded that 
the polymer stress has to be the only source of energy which prevents relaminarization 
occvurring. A more recent experiment by Ptasinski et al. (2001) supports the decreasing 
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trend of the Reynolds stress but found it to be non-negligible at MDR. It indicates that 
turbulence structures did not fully vanish in their experiments, adding more confusion 
as to how MDR could be defined. 

In order to simulate all regimes of drag reductions, it has to be assumed that a vis- 
coelastic model can be used. The first simulation of this kind by Sureshkumar et al. 
(1997), using the FENE-P model, proved to reproduce the shift of the log law in the 
mean-velocity profile, the increase of streamwise velocity fluctuations and reduction of 
transverse fluctuations observed at LDR. Sureshkumar et al. used spectral methods while 
recent results (Min et al. 2001; Dubief & Lele 2001) have shown that finite difierences 
can produce similar results. By improving the robustness of the temporal scheme used in 
Dubief & Lele (2001) to solve the FENE-P model, it is shown in this paper that a state 
very similar to the one observed experimentally at HDR can be achieved. The comparison 
with experiments is extended to coherent structures in the near-wall region. 

2. Numerical method 
2.1. Formalism 

Polymer dynamics has typical length scales much smaller than the smallest turbulent 
flow scales. Using traditional numerical schemes for flow simulation makes the explicit 
resolution of molecules unfeasible with current computer facilities; therefore the polymer 
field has to be modeled. The evolution of polymers is predicted from bead-spring (dumb- 
bell) models. Each dumbbell is subject to the hydrodynamic forces exerted by the flow on 
the beads, the spring force and Brownian forces. The balance of forces gives an evolution 
equation for the end to end dumbbell vector q, known as the FENE (Finitely Extensible 
Nonlinear Elastic) model. A constitutive approach is obtained by taking the Brownian 
motion into account, using a phase average of the product of the q-components, which 
defines the conformation tensor Cij = (qiqj). The hydrodynamic and relaxation (spring) 
forces are explicitly simulated; the latter force can be estimated with various models. 
The model used here is the FENE-P model, where P stands for the Peterlin function, /, 
defining the following set of equations 

dtCij + UkdkCij = CkjdkUi + CikdkUj - — {fdj - Sij), (2.1) 

The parameter L is the maximum polymer extension and the Weissenberg number. We, 
the ratio of the polymer to the flow time scales and ensures the non-dimensionality of 
(2.1). Finally the contribution of polymers to the flow is brought in the momentum 
equations via the divergence of the polymeric stress tensor T^-, 

'^y = ^(/cij-«5y), (2.3) 

yielding the viscoelastic momentum equations, 

dtUi + UjdjUi = -dip + ^jdjUi + -^— djTij, (2.4) 

where /3 is the ratio of the solvent viscosity 77, to the total viscosity TJ. The last term in 
the r.h.s. of (2.4) is the contribution of the viscoelastic stress to the flow. 
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2.2. Spatial derivatives 

The numerical code was described by Dubief & Lele (2001). The numerical method 
follows that of Min et al. (2001). Velocities are discretized on a staggered grid while the 
pressure and the polymeric tensors Cjj and Ty are located at the cell-center. Velocity 
derivatives are computed using second-order finite-difference schemes. To maintain good 
resolution, the polymeric stress derivatives axe calculated with a non-dissipative fourth- 
order compact scheme. The advection terms of (2.1) are solved using a compact upwind 
scheme similar to Min et al. (2001), modified to guarantee at least third-order accuracy. 
Using the following upwinding coefficient, 

e=:l{s- + s+), (2.5) 

where s~ and s+ are the sign of the velocity at the interface of the cell, the compact 
scheme writes 

(2 + 3s)4>'i.i + 8<^; + (2 - 3£)</>^+i = g^ [(-1 - £).^i-i + 2e<l>i + (1 - £)(^i+i],     (2-6) 

Like any upwind scheme, it introduces numerical dissipation at small scales, which proves 
to stabihze the solution of (2.1). However, as mentioned by Min et al. (2001), an extra 
dissipation has to be locally added, wherever the tensor Cij is not positive-definite, i.e. 
when det (cij) < 0. The number of nodes affected by the local artificial dissipation (defined 
in Min et al. 2001; Dubief & Lele 2001) depends on the strength of the flow, the length 
and Weissenberg number of the polymers and the coefficient of local artificial dissipation 
(LAD). The worst case is the uncoupled case as will be shown later;as much as 20% of 
grid points may have det(cij) < 0 for high L and We. In drag-reduced flows, the number 
of points requiring LAD drops to significantly smaller firactions, of the order of 5% and 
less for LDR, and less than 1% for HDR. Further insight on this issue will be given in 
section 3. 

2.3. Time-stepping technique 

The numerical method used to solve (2.4) is based on a semi-implicit, firactional-step 
method (Le & Moin 1991). The Newtonian viscous stress in the wall-normal direction 
is advanced in time with the Crank-Nicolson scheme, while all other terms in (2.1) and 
(2.4) are advanced with a third-order Runge-Kutta (RK3) method. After solving (2.1) 
at time (l), the resulting algorithm is 

(*)       (i-i) 

At 
= -^.Nf^ - OATf-2) + a: (L« +1^-"^ + TP + Tt'^)        (2.7) 

dkdkcl>=-^ku'C^ (2-8) 

uf^^u'C^-aiAtdict> (2.9) 
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In (2.7), N, L and T denote the non-linear, viscous and polymeric terms, respectively. 
The index I is the substep of the RK3 and yi, 0 and aj the corresponding coefficients: 

8 .       . 4 
'^^ = 15= Ci = o; "^ = 15 

5 17 1 

^^=12' ^' - "60= "^=15 
3 5 1 

73 = T; 4 C3 = -j2; as = - 

The use of a fully-explicit scheme for the the time derivative in (2.1) appeared to be 
unstable under strong magnitude of turbulence or for large We. The relaxation force 
is extremely stiff when the trace ca approaches L^. Small time steps are then required 
to diminish numerical errors that might induce some local extensions to become larger 
than L^ (Dubief & Lele 2001). Prom (2.1), it can be inferred that the simulation diverges 
to infinity when the Peterlin function ( 2.2) turns negative. Previous studies have used 
fully or semi-implicit scheme in order to avoid this issue. For FENE dumbbell simulations, 
Herrchen & Ottinger (1997) implemented a second order semi-impUcit predictor-corrector 
scheme. The implicit part of this scheme yields a cubic equation for the length of the 
polymer which has a unique root within the physical bounds q^ e]0; L'^[. A similar method 
can be applied to the trace of (2.1) in which the relaxation term is solved implicitly 
and the stretching terms explicitly. Following the same numerical scheme as for the 
momentum equations (2.4), the time advancement of (2.1) is 

.(') c('.-i) 

At 7,4"'^+04''^ 

ai 
„('-!) 

[We\l-c<il/L^ -Sii\ + i>tj 
We 1 - c^'-^) /L2 

-Si »j 

(2.10) 

where 

4^ = -i!^^cg> + (cl29.n5')+cga..f)) (2.11) 

By summing the equations for the diagonal components and using the variable V'^'^ = 
1 - Ckkl^'^1 equation (2.10) can be simply recast into a second-order polynomial, 

(V;«)2+ 
^C-i) 

Ai 
+f(7<i?r^^+oi?ro-^^'-^^ ^ We       ' 

(2.12) 

whose roots are real and of opposite sign. It can be shown that the unique positive root 

v>w = 

approaches zero as 

V^C) 
2ajA< 

(2.13) 

(2.14) 

when 6 » 1 (6 is the coefficient of V"^'^ in 2.12). Note that this scheme can ensure only 
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that the trace is upper bounded {ip > 0) but may allow negative values of Ckk (V* > !)■ 
The latter situation occurs wherever 

' V— ^ // 

I 

is not satisfied. In this equation, the term 7 is strictly positive for any V^'"^^ G]0; 1[ 
when L^ > 3, while II is subject to fluctuations in both the advection and the stretching 
terms of Cij, which render the value of II with respect to I difficult to predict in a 
turbulent flow. Even though a positive At can always be found to ensure that (2.15) is 
satisfied, we are interested in time steps of the order of the time step of the flow when 
the CFL number is of the order of unity. The time constraint of the compact upwind 
scheme ( 2.6) requires CFL = 0.5 (Min et al. 2001), which turns out to be too high 
for the computation of (2.10). At this CFL number, the solution of the polymer field 
exhibit strong oscillations at high wavenumbers. For our flow conditions, CFL = 0.25 
was enough to get rid of the high frequency oscillations, and marginal differences were 
found with results calculated at CFL = 0.025. These two simulations gave approximately 
the same firaction of grid points at which Cij was not positive-definite. In order to get 
more insight in the behavior of the term II in (2.15), a simulation was performed without 
the advection term, so that the polymers do not move with the flow; it was found that 
the determinant of Cij was negative for only ~ 10"^% of the nodes for CFL = 0.25 
and that (2.15) was always satisfied. In this numerical experiment, it can be argued 
that there is not enough stretching to create a breakdown of (2.15), since the small- 
scale structures are advected and the polymers are not. The simulation discussed in 
the next section, where the Eulerian advection is replaced by a Lagrangian, does not 
experience any loss of positiveness of the conformation tensor. The Eulerian advection 
can therefore be identified as the major cause of instabilities and unphysical solutions in 
the computation of the discrete evolution equations of Cij, 2.10). It should be noted that 
the conditions (2.15) and det(cij) > 0 are necessary but not sufficient. We are cvirrently 
investigating a modification of the procedure of Min et al. (2001) for which the lost of 
positiveness is defined as (Afe(x) > 0; A; = 1,3, where Afc(x) is the k^^ eigenvalue of Cij(x). 

3. 'Eulerian vs. Lagrangian' or the problem of pure advection 
The FENE-P equations are derived from molecular theories, which predicts the evolu- 

tion of a single molecule as a function of hydrodynamic, entropic and Brownian forces. In 
this particular framework, particles move with the flow and the advection term in (2.1) 
reproduces this motion in the macroscopic formalism. In the Stanford group working 
on poljoners, Mr. V. Terrapon is in charge of Brownian Dynamic simulation of polymer 
molecules represented as particles moving with the flow. This method allows the study of 
the effects of the flow on polymers without back-coupling, due to the inadequate number 
of particles (~ 10^ in a minimal channel flow unit). The comparison of this microscopic 
approach with our macroscopic formalism can be made simply by solving (2.1) without 
the advection terms on the particles which are advected in a Lagrangian manner (called 
hereafter Particle-Tracking, PT): 

^=u(x,), (3.1) 



382 y. Duhief 

II- 

..11(11   
1500 '   \ - 

1000 

/'■>    \ 

- 

500 
• 

f^ )                 50 J   loo' 'ft 
y 

FIGURE 1. Normal stress profiles of the viscoelastic simulation compared to the particle-tracking 
(PT) simulation. All simulations are run at Wcr = 35. L = 60 : , 64 x 129 x 32; , 
96 X 151 X 48;  , 128 x 257 x 128; o , PT. L = 30: , 96 x 151 x 48; D PT. 

FIGURE 2. Snapshots of Ckk/L^ in the y - z plane for different resolutions, from left to right: 
64 X 129 X 32; 96 x 151 x 48; 128 x 257 x 128. Only the lower half of the channel is shown. The 
scale goes from white (0%) to black (90%). 

where Xp is the location of a particle in the flow. The simulations are run with identical 
polymer and flow parameters: L = 60 and 30, We = 3.0, /? = 1. In the PT simulation, the 
average is performed over small bins in the wall-normaJ direction. The mean normal stress 
is plotted as a function of i/+ in figure 1. For both polymer lengths, the overestimation of 
the Eulerian method is obvious, and the averaging due to the bins for the PT statistics 
has a very small effect compared to the magnitude of the discrepancy. For stiff polymers 
{L = 30), the difference is slightly smaller than for L = 60. In the latter case, increasing 
the number of grid points brings the macroscopic solution closer to the microscopic 
one, yet the error remains large. Figure 2 displays snapshots of Ckk in cross-planes for 
three different resolutions. The finer the resolution, the thinner the regions of highly- 
stretched polymer. For the coarsest grid, the discretized solution does predict high stretch 
of the vortices; however this phenomenon is spread over several grid points, yielding 
these large dark regions. The diffusion is not only due to the use of artificial dissipation. 
Obviously, the conformation tensor equations generate small scales and sharp gradients 
that are of energetic importance to the polymer dynamics. As the discretized Navier- 
Stokes equations behave in LES by increasing the streak dimensions to fit a coarse grid, 
the discretized equation (2.1) seems to adjust its physics to the grid. 

As was implied in the previous section, the advection term cannot be handled without 
dissipation and was found to cause unphysical solutions. Taken alone as a pure advection 
equation, such an equation is known to produce extremely sharp gradients, impossible to 
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FIGURE 3. Spectral distributions of the streamwise velocity and polymer stress fluctuations. 
Left: DR = 0%. o : «; : T„; : TJ,„;  : r..; : r^y. Right: Symbols and 
lines show spectra of wall-normal velocity and polymer stress, respectively, o , : DR - 0%, 
A : DR = 20%; D,  : DR = 65%. The spectra are normalized by their respective 
variance. 

capture numerically without any artifacts such as artificial diffusion. In the conformation 
tensor equations, the stretching and entropic terms relate to scales imposed by the flow, 
from the largest to the Kolmogorov scale (rj = v^^^/e^^^, where £ is the dissipation rate), 
and the relaxation time controlled by the Weissenberg number. Intuitively, it could be 
assumed that small eddies would create thin regions of polymer stretch and, in such a case, 
advection is likely to act on these regions to produce smaller scales. How small depends 
merely on a diffusive phenomenon, which is not explicit in (2.1), since the diffusion 
of polymer molecules in the solvent is extremely low. A rough estimation of a Schmidt 
number would be 10^ ~ 10^. The stretching and entropic terms indicate that the behavior 
of a polymer molecule is not related to its neighbors but depends on the flow scales 
it experiences locally. Therefore, as a first approximation, it is tempting to draw an 
analogy between (2.1) and a passive-scalar equation at very high Schmidt number {Sc = 
V/K, where K is the scalar diffusion), with the addition of a source term containing the 
hydrodynamic and entropic forces. 

The spectral properties of the passive-scalar equation. 

dtB + Ujdj9 = j-^jdj6, (3.2) 

were first studied by Batchelor (1959) and Batchelor et al. (1959). At small scales, their 
analysis predicts two distinct behaviors of the passive-scalar spectrum depending on the 
value of Sc relative to unity. For Sc<l, they found that the spectrum of the variance 
of scalar fluctuations advected by the velocity scales firom the inertial subrange should 
decay as Ee(fe) ~ fc"^'''/^, for wavenumbers greater than fes = Sc^l^lr). For Sc > 1, the 
theory predicts the so-called Batchelor spectrum, 

(3.3) Eft 1,-1 

valid from the Kolmogorov wavenumber up to the Batchelor wavenumber, 

5cV2 
fcfi = •n 

(3.4) 

If the conformation tensor equations ( 2.1) were to be derived including the actual diffu- 
sion of polymers, the length scale would be 10"^ to 10"^ smaller than 77, assuming that 
the effect of the source term could be disregarded. The analogy with the passive scalar 
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finds some support in the comparison of spectral distributions of the polymer stress to 
those of velocity. Figure 3 displays spectra, which are normalized by their respective 
variance to make comparisons easier. It is striking that the polymer stress contains con- 
siderable energy at the highest wavenumbers resolved. This result is not surprising since 
polymers are expected to be mostly affected by small scales. However this plot demon- 
strates that our resolution i (Az"*" = 4.5) is far from sufficient in the uncoupled case 
(DR = 0%). The local character of the artificial dissipation used to stabilize the advec- 
tion term is equivalent to a MILES approach, which could be defined as a large-eddy 
simulation where the subgrid-scale model is embedded in the numerical scheme. All the 
energy contained at the highest wavenumbers is contaminated by the dispersion of our 
finite difference schemes. An energy backscatter could be a solid assumption to explain 
the discrepancy with PT simulations (Fig 1). Also plotted in figure 3 is the evolution of 
the spectra of v and Tyy with increasing DR. The reduction in the small scale energy 
of the velocity field allows polymer stress spectra to drop faster at high wavenumbers, 
although the decay is obviously very different from that of the velocity. At HDR, the 
decay of spectral energy or Ty is sufficient that a fairly coarse grid can be used. An 
ongoing resolution study for this regime suggests that the coarsest grid used in figure 1 
gives results in good agreement with simulations at higher resolution. 

The implementation of a subgrid-scale model for the advection term only is currently 
being investigated, and it has so far been found to improve the solution regarding the loss 
of positiveness of Cij. Statistics are being gathered to assess the effect on polymer-stress 
statistics. 

4. Results 

In this section, three simulations are discussed. The Reynolds number based on the 
channel half-width and the centerline velocity is 7500, which translates into /i+ = 295 
when DR = 0%. This study aims at comparing the solution obtained with a minimal 
channel flow and the one computed from a domain four times the length and span of a 
minimal channel flow. These simulations respectively predict DR = 67% and DR. = 47% 
with L = 60, /3 = 0.9 and Wcr = 84. A third simulation using the large computational 
domain is also presented, for which the length and Weissenberg number are increased 
{L = 100, Wer = 120). The drag reduction is 60%. All simulations are performed on grid 
with a constant resolution of Ax+ = 15, Aj/+ = 0.1-8 and A2+ = 9, when normalized 
by the skin firiction at DR = 0%. 

4.1.  Velocity statistics 

The effect of the domain size on the mean velocity is quite dramatic (figure 4). While 
the minimal channel predicts an MDR regime, the larger domain produces a regime 
which appears to be close to the lower bound of the HDR regime. It is obvious that 
the HDR regime is populated by very-large-scale structures that have an impact on the 
drag and therefore need to be resolved. The fact that turbulence does not vanish in the 
minimal channel flow demonstrates that these very large scales are yet not of the highest 
importance for the dynamics of the flow. Our hope to achieve MDR by increasing the 
poljTner length and elasticity has not been rewarded, but the trend is encouraging. Also 
plotted in figure 4 are the data obtained by Dr. White and Mr. SomendapalH, who take 
care of the experimental study at Stanford. The agreement is very good for DR = 47% 
and a departure is observed for the MDR case near the centerline. The experiment 
has been shown to have strong inhomogeneities in the polymer distribution across the 
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FIGURE 5. RMS of velocity fluctuations in outer(Ze/t) and inner {right) variables. Lines as 
defined in figure 4. o : u'; ^ : v'. 

boundary layer, resulting in the existence of tiirbulent structures in the outer region of 
the flow. The near-collapse of the mean velocity profile in the minimal channel with Virk 
& Mickley (1970)'s asymptote can be attributed to the insufficient length and span of the 
outer region. As seen in figure 4, mean-velocity profiles at HDR retain a shape typical of 
turbulence rather than tending toward the laminar profile. 

The turbulent intensities decrease as drag reduction increases, as shown in figiure 5 
(left). The peak of u' shifts away from the wall, but its magnitude decreases slowly 
compared to v' (w' behaves as v' and consequently is omitted firom the plot for clarity). 
This difference is clear when inner scaling is used. In drag reduced flow, the maximum 
of u'"*" is actually higher or comparable with the DR = 0% case, as found in experiments 
(WarhoUc et al. 1999; Ptasinski et al. 2001). These plots suggest that extremely long 
and elastic polymers are needed to damp the turbulence, according to the prediction of 
the FENE-P model. At HDR, the polymer stress (not shown here) is low and therefore 
the inabiUty of the FENE-P model to predict MDR for polymers, which are more elastic 
and concentrated than a typical PEO solution, indicates that internal modes may no 
longer be ignored. The major interest of the minimal channel flow experiment is to 
understand where the energy which sustains the turbulence comes from. The Reynolds 
stress, when normalized by outer length scales, diminishes by an order of magnitude in 
the upper HDR regime (figure 6). In inner variables, the Reynolds stress appears to be 
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polymer stress A normalized by inner variables. Lines as defined in figure 4 

only reduced by a factor of 4 for DR = 67%, which is consistent with Ptasinski et al. 
(2001) but disagrees with Warholic et al. (1999) who found a near-zero Reynolds stress 
at MDR. The contribution of the polymer stress in the balance, 

— - I 1 _ ^ 
"w2" ■ 

+ du   1 
hi     u^Re dy     u%Re f xy = 0, (4.1) 

is of the same order as the Reynolds stress in our simulations of HDR, even larger in the 
case of the minimal channel. In spite of the incomplete physics simulated in the minimal 
channel, such simulation provides extremely valuable information about what MDR could 
be. Thus it can be surmised that MDR is purely a near-wall phenomenon, since T+^ is 
larger than —uF*' from the wall up to y"*" = 70. Considering the weak magnitude of 
the turbulent intensities, the polymer dynamics is likely to be driven by shear-dominant 
event. It should be noted that Warholic et al. (1999) and Ptasinski et al. (2001) suggested 
also that MDR is sustained by polymer stress alone. 

4.2. Structure of the HDR turbulence 

Using an appropriate vortex-identification scheme (the Q-criterion in the present case, 
Q = (fiyfiij - SijSij)/2, Dubief k Delcayre 2000), figure 7 illustrates the dramatic 
modification of coherent vortical structures between the Newtonian flow and the HDR 
regime. At HDR, near-wall vortices are weaker and more horseshoe-type vortices can 
be found. The weakening of the vortices has also been observed by our experimental 
group, together with an increase of streak dimensions as depicted by the contours of the 
polymer stretch Ckk at the wall. Due to the no-slip condition, the dynamics of Ckk at the 
wall is driven by du/dy. So far, the streamwise coherence of the streaks has not been 
determined either experimentally or numerically. Experimental data indicate that they 
could be several thousands of wall units long. Also shown in figure 7, the polymer stretch 
y/ckk/L in the channel flow (contours on the side walls) exhibits completely different 
patterns for the Newtonian simulation and the HDR regime. In the former, regions of 
high stretch are observed to extend in the wall-normal direction and they are found to 
correlate with upwash and downwash motions of the flow (not shown here). For the HDR 
regime the polymer field is organized in thin layers which seem to denote the energetic 
activity of the polymers in the near-wall region. 
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FIGURE 7. Snapshot of vortices {top) and polymer stretch {bottom) for the Newtonian case 
{left) and HDR {right). The vortices are identified with the Q-criterion: Q = 0.5fe /U^ for the 
Newtonian flow and Q = 0.08h^/U^ for HDR. 

5. Perspectives 
The simulation of turbulent viscoelastic flows requires overcoming many obstacles, 

and the present work only partially resolves the major issues. Although desirable, the 
implementation of a subgrid scale for the advection in the conformation tensor equation is 
not expected to resolve the discrepancy between the Eulerian and Lagrangian approaches. 
This study has at least shown the importance of solving scales close to Kolmogorov with 
as little dissipation for the polymer stress as possible. The size of the computational 
domain is another issue addressed by this paper. It is not clear how long the channel 
needs to be, since experimental observations indicate that streaks might be coherent over 
several thousands wall units. Nevertheless, it is remarkable that, in spite of a simphstic 
model and unresolved (large and small) scales, our simulations reproduce many features 
observed experimentally in the HDR regime. 

Based on our results obtained experimentally and numerically at the macroscopic and 
microscopic levels, some advances have been made regarding the understanding of the 
phenomenon of drag reduction with polymer additives. In publications to appear, it will 
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be demonstrated that polymer drag reduction is purely a near-wall phenomenon, which 
affects almost exclusively quasi-streamwise vortices. 

The support of DARPA is gratefully acknowledged. 
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Flat-plate boundary-layer transition in hypersonic 
flows 

By C. Steminer 

1. Motivation and objective 
Knowledge on transitional flows at elevated Mach numbers is very limited due to the 

immense difl&culty in conducting experiments - be it wind-tunnel or free-flight. Therefore, 
direct numerical simulation provides a very powerful tool to gain significant insight into 
these high-temperature flows. These high-temperature hypersonic flows become chemi- 
cally reacting creating additional challenges for the modeling of chemical reactions and 
the thermodynamic properties of such flows. The simulation of laminar-turbulent tran- 
sition in boundary-layer flows for entry scenarios can deliver estimates of flight-relevant 
physical properties such as drag and heat transfer important for the flight path design 
and the design of the heat shield of an entry vehicle, respectively. 

Early efforts to investigate hypersonic flows involved rockets in free-flight experi- 
ments, where qualitative results where obtained for the transition location (see Schnei- 
der (1999)). These experiments, according to Schneider, axe not very reUable in terms 
of quantitativeness since the angle of attack is not measured accurately enough. R«cent 
efforts to investigate hypersonic flows include Ma=21 experiments by a Russian group, 
Mironov & Maslov (2000), at Novosibirsk, which can serve as a qualitative comparison 
to the presented direct numerical simulations. Free-flight hypersonic experiments are not 
to be expected in the near future due to the sheer cost involved. 

Direct numerical simulations with high-order finite-difference schemes shall be em- 
ployed to unveil some of the important mechanisms in the evolution of laminar-turbtilent 
transition in flat-plate boundary-layer flows. The differences between transition assuming 
ideal-gas and chemically-reacting flows is the main goal of this ongoing investigation. 

2. Numerical method 
The well-documented numerical method developed by Adams (1996), Adams (1998) 

and Adams (2000) for turbulent compression-ramp flow is employed for the high Mach- 
number simulations. The discretization is on the base of the conservative, compressible 
Navier-Stokes equations. The mesh is uniform in the downstream direction and variable 
in the wall-normal direction allowing for the collocation of grid points at the boundary- 
layer edge. The numerical method is a compact one and sixth-order accurate in space 
with periodic boundary conditions in the spanwise direction. The time advancement is 
done with a Runge-Kutta time integration scheme of third order accuracy. Very sharp 
gradients that caimot be resolved through the numerical scheme are captured in all three 
spatial directions through a hybrid ENO-scheme singling out the regions where it needs 
to be applied only. For the incorporation of the chemical and thermal high-temperature 
effects, the modeling of Stemmer & Mansour (2001) is used. 
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FIGURE 1. Wall-normal profiles of streamwise-velocity, temperature and density for Rei=4 -10® 
in dimensional units. Note that the density has been multiplied by a factor of 10* to show on 
the graph. 

Disturbances are introduced at the wall through a disturbance strip. Blowing and 
suction is applied simultaneously to ensure that zero net mass is introduced at any one 
time step (see Eifiler, (1995)) 

81 

(H(2-C)L.„ = ->i(H- 
o<C<i, 

(2.1) 

The function g{z, t) is a trigonometric function in time and space. 
The dimensional quantities of the Ma=20 flow at free-stream conditions at an altitude 

of H=50km are [/■oo=6596 m/s, poo = 1.027-10-3 Kg/m^, Too = 270.65 K and the viscosity 
is /Xoo = 1.703-10-^ Kg/(m- s) according to the US Standard Atmosphere (1976). An 
isothermal case is investigated with T^aii = 3Too = 811.95 K . 

The ideal gas boundary layer equations, Anderson (1989), were solved for the starting 
solution of the base-flow calculations. The wall-normal profiles of downstream velocity 
(u), temperature (t) and density (p) are shown in figure 1. The sharp rise in density at the 
boundary-layer edge {y=0.29 m) is a prominent feature of the boundary-layer profiles, 
which underlines the necessity of a fine resolution at that wall-normal position. 

For the present simulation, a resolution of 1500 x 240 x 6 points in x, y and z-direction 
are used. This yields a resolution of Aa; = 0.066, Aj/min = 7.717 • 10"^ and Az = 
0.146, where the lengths are made dimensionless with the boundary-layer thickness Si = 
0.2197m. 

In deviation to the ideal gas case, vibrational degrees of freedom were incorporated in 
the code for the calculation of the thermodynamic properties. 
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3, Stability properties 
After Lees & Lin (1946) had laid the foundation of a compressible stability theory 

through an asymptotic viscous approach, Mack (1969) developed the full parallel theory 
for finite Reynolds numbers. The stabiUty properties are evaluated through linearization 
of the complete Navier-Stokes equations in a locally parallel flow. The disturbances are 
assumed to be harmonic in nature 

q'{x, y, z, t) = q{y) exp [i{ax + I3z - act)], (3.1) 

where q={u,v,w,/9,p,t}. The wave numbers a and 13 are complex in the most general sense 
and describe temporal as well as spatial growth. The reader is kindly referred to Gaster 
(1965) for the transformation of spatial ampUfication rates into temporal amplification 
rates and vice versa. 

Mack's original computer code for ideal-gas flows was available to produce the pre- 
sented stability results for the Ma=20 flow. Mack normalizes the stability results with 
the Reynolds number defined as 

R^ = y/Re{x) 

\ 

(3.2) 

where variables with a tilde denote dimensional variables. The wall-normal coordinate y 
is non-dimensionalized through 

r? = if ■ -—■ (3-3) 
X 

The boundary-layer thickness for this case is 77(5] w 29.1 _. 
The frequency parameter F is defined as F=f2'!TJl/{pU^}. For the dimensionless fre- 

quency of F=3.6416-10~^, the dimensional frequency is / = 15.2 KHz. Firstly, two- 
dimensional disturbances are investigated since they turn out to be the most amplified 
waves for the chosen frequency. The spatial amplification rate -a^ over a wide range of 
Reynolds numbers is shown in figure 2 compared to two-dimensional disturbances with 
a shghtly higher frequency. For the higher firequency, the same pattern appears but is 
shifted to smaller Reynolds nimibers Rx. Two local peaks of the spatial amplification 
can be identified at R^ « 1000 and R^ w 2250. Comparing the eigenfunctions for the 
pressure p at these respective Reynolds numbers, one can identify the first peak with 
a first mode disturbance (according to the classification by Mack). At these high Mach 
numbers, the areas of instabifity merge and the ampUfication rate shows unstable waves 
as the eigenfunctions switch to a second mode disturbance. The peak at Rx « 2250 is 
associated with such a disturbance exhibiting a zero in its wall-normal amphtude profile. 
The number of zeros is one less than the mode number given by Mack. At Rx « 3500, 
the third mode is present with a slightly lower peak in the amplification rates. Down- 
stream of Rx « 4000, the two-dimensional disturbance will encounter damping as the 
amplification rate —«» becomes negative for this frequency. 

The phase velocities of the xmstable eigensolution is shown in figiure 3. Inviscid theory 
predicts a phase speed of Cp^ = 1 - ;;5j^ = 0.95 which is very close to the observed phase 
velocities of Cph « 0.98 which in turn is very close to the free-stream velocity. Every peak 
in the spatial amplification rates coincides with a local minimum in the phase velocities. 

Wall-normal profiles of the eigensolutions of the stability problem are shown at the local 
Reynolds number of Rx= 1000 (first mode disturbance) in figure 4. This two-dimensional 
mode represents the first peak in figure 2. The eigenfunctions of the downstream velocity 
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FIGURE 2. spatial amplification rates —QJ VS. FIGURE 3. phase velocity Cp/i vs. the down- 
the downstream direction for two-dimensional stream direction for two-dimensional distur- 
disturbances at F=3.6416-10~^ ( ) and bances   at   F=3.641610~^   (       )   and 
F=3.9-10-^ ( ) F=3.9-10-^ ( ) 

FIGURE 4. u and v eigensolutions at FIGURE 5. t, p and p eigensolutions at 
Rx=1000 for two-dimensional disturbances Ri=1000 for two-dimensional disturbances at 
at   F=3.641610-^.   Uamp   (     ),   Vamp   F=3.6416•10-^ t is scaled by a factor of 0.1. 
( )i 'iphs  (    )i Vphs  ( ). tomp ( ), Pamp ( ), Pamp ( ), 

tphs  (    ). Pphs  ( ), Vv><-> ( )• 

u and the wall-normal velocity v both show a distinct maximum inside the boundary 
layer and a second, much smaller maximum outside the boundary layer typical for the 
first mode disturbance. The pressure (see figure 5) has no zero in it's profile distinguishing 
the first mode eigenfunction. 

At the local Reynolds number of Rx= 2450, the second mode disturbance is the most 
unstable eigenmode. The wall-normal profiles of the eigensolutions of the stability equa- 
tions are shown in figure 6 and 7. For higher Mach-numbers, the second mode is generally 
strongly amplified. For the high Mach number chosen, the amplification rates of the two- 
dimensional first and second modes are very close. 

In figure 6, the eigenfunctions for the downstream velocity u and the wall-normal ve- 



Transition in hypersonic flows 393 

3Sn 

FIGURE    6.    u    and    v    eigensolutions    at 
Ri=2450   for   two-dimensional   disturbances 
at   F=3.6416-10-^.   Uamp   {       )>   ^amp   { 
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FIGURE 7. t, p and p eigensolutions at 
Rx=2450 for two-dimensional disturbances at 
F=3.6416-10~®. t is scaled by a factor of 0.1. 
^amp 
^phs 

•),Pamp{                 ),Pamp\        '        ), 
), Pphs ( ), Pphs ( )• 

locity V axe shown together with their phase distribution for that local Reynolds number. 
Compared to the earUer station Rx= 1000 (figure 4), the eigenfunctions now show a dou- 
ble peak inside the boundary layers. As one goes further downstream (not shown here), 
the number of maxima inside the boundary layer increases. The pressure as shown in 
figure 7 shows a phase shift of TT at 77=4 identifying the second mode. It can be noted, 
that the density eigenfunction looks almost identical to the case at Rx= 1000. 

The results for the third mode at Jix = 2800 will be shown together with the simulation 
results fiurther into the report. 

The importance of the three-dimensional modes for the above described conditions 
is discussed by means of figure 8 showing the dependence of the amplification rate on 
the obliqueness angle of the disturbance (f. Four downstream locations axe shown. For 
Rx= 800, before the first-mode instability sets in, there is almost no dependence on the 
obhqueness angle for the damped waves. As the first-mode instability is at its peak at Rx= 
1000, low obliqueness waves are almost as imstable as the two-dimensional disturbance 
up to approximately 20°. The amplification rates drops continuously down to neutral 
at about (p= 65°. For Rx= 2250, the picture is very similar to the station where the 
first-mode instability is at its maximum. 

The presented stability results are based on a non-reacting ideal-gas flow. The effects 
of the chemical reactions have been studied among others by Johnson, Seipp & Candler 
(1998), which have found that chemical reactions can diminish amplification rates and 
delay transition. This coincides with other work on chemically reacting flow. 

4. Results 
The simulations have been carried out under free-flight conditions at an altitude of 

H=50 Km (compare page 390 for the dimensional properties). The disturbances were 
introduced at a Reynolds number of Rx = 2250 (x=58). An acoustic disturbance is 
introduced which propagates towards the upper boundary at the Mach angle of 0 w 3°. 
This accounts for the elevated amplitudes in the presented results for y > 0.3. 
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FIGURE 9. Comparison of simulation ( )   FIGURE 10. Comparison of simulation ( ) 
and Linear Stability results ( ) of the   and Linear Stability results ( ) of the 
downstream velocity n at Rx = 2800 wall-normal velocity v a.t Rx = 2800 

The results for the most-amplified two-dimensional disturbance are compared with the 
stability results acquired through Mack's stability code in figures 9-12 at R^ = 2800. The 
downstream velocity (u) in figure 9 shows very close agreement to the theoretical results 
reproducing the phase shift at the right wall-normal distances. The way the disturbances 
are introduced opens the possibility of the presence of multiple instabiUty waves with 
the same frequency but differing wave numbers. 

The deviation from the theoretical results can be explained through the inclusion of 
the vibrational modes in the calculation of the thermodynamic properties. In areas of 
high temperature ( above ~ 3000 K), this will alter the temperature profile compared 
to the ideal-gas case. This happens at 0.2 <y < 0.3 for Rx = 2800 and can explain the 
differences there. 

The wall-normal velocity (v) is presented in figure 10, pressure (p) and density (p) are 
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FIGURE 11. Comparison of simulation ( )   FIGURE 12. Comparison of simulation ( ) 
and Linear Stability results { ) of the   and Linear Stability results ( ) of the den- 
pressure p at jRx = 2800                                       sity p aX Rx = 2800 

shown in figure 11 and figure 12, respectively. The temperature results are qualitatively 
the same as the presented results. 

The amplification rate given by the stability theory results is a; = -0.0186[l/m] and 
the rate obtained from the simulation is a, = -0.017[l/m]. 

5. Conclusions and future work 
It has been shown that the numerical method presented is capable of tackling the 

hypersonic transition problem proposed. The results of the Linear Stability Theory match 
well with the simulation results for a third mode unstable two-dimensional disturbance. 

Fundamental and oblique transition scenarios for the described Ma=20 flow will be 
performed. Simulations will be undertaken to provide for chemical and thermal non- 
equihbrium conditions. 

To mimic closer the introduction of disturbances in an experimental environment, a 
point source disturbance, Stemmer (2001), will be introduced. Therefore, a single fre- 
quency with all possible spanwise wave numbers can be excited simultaneously leaving 
the flow to naturally amplify the unstable components of the disturbance. 

Laminar-turbulent transition scenarios under vaxying disturbance conditions will be 
investigated to understand more about the physical behaviour of chemically reacting 
flows in transition on a flat plate. 
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Simple stochastic model for laminar-to-tm-bulent 
subcritical transition 

By Sergei Fedotov f, Irina Bashkirtseva t AND Lev Ryashko X 

1. Motivation and objectives 
The main purpose of this paper is to study the effects of stochastic perturbations on 

a non-normal dynamical system mimicking laminar-to-turbulent subcritical transition. 
The mechanism of non-normal transient linear growth has received much attention, both 
experimentally and theoretically, during the past decade, especially after the seminal 
work of Trefethen et al. (1993). The main reason is that this explains the onset of tur- 
bulence when the laminar flow passes to a tmrbulent regime without linear instabiUty. 
Non-normality of the linearized Navier-Stokes evolution operator leads to the transient 
growth of velocity disturbances, even though the steady mean flow is linearly stable. A 
typical example of such transient growth is the function t exp(-t). Let us remind that the 
matrix A is normal, if AA* = A*A, where * denotes the Hermitian transpose, otherwise 
it is non-normal. The nonlinear interactions lead to a further amplification of the initially 
small but finite disturbances. Nonlinear terms play a vital role in the redistribution of 
energy to those disturbances which exhibit a linear transient growth. Thus the transi- 
tion to turbulence is not a consequence of the Unear instability of the stationary laminar 
flow; rather, it is the result of the interaction of the non-normality-producing transient 
amplification of velocity perturbations and energy-conserving nonlinearities driving the 
system into the basin of attraction of the turbulent regime. A comprehensive review of 
the up-to-date results on such interactions and the resulting onset of shear-flow turbu- 
lence can be found in the review by Grossraann (2000) and the book by Schmid and 
Henningson (2001). 

Several theoretical studies have been devoted to stochastically-forced dynamical sys- 
tems involving a non-normal operator (Farrel & loannou 1993; Bassam & Dahlem 2001). 
It has been found that these systems have an extraordinary sensitivity to random per- 
turbations, which leads to a great amplification of the variances. However, this research 
has focused only on Hnear non-normal systems. 

The objective of this paper is to study the interaction between the following three 
factors: non-linearity, non-normality, and stochastics. In order to gain some insight into 
this problem, we shall examine the role of external noise in a simple non-normal dynamical 
system mimicking laminar-to-turbulent subcritical transition 

^ = ^ev + u-{u'' + v'')K, (1.1) 

where u and v mimic streamwise vortices and streamwise streaks respectively; e is a small 
parameter, chosen in analogy with the inverse Reynolds number. This djrnamical system 

t Also, Department of Mathematics, UMIST, Manchester, U.K. 
i Department of Mathematical Physics, Ural State University, 620083 Ekaterinburg, Russia 
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has been suggested by Trefethen et al. (1993) as a simple model explaining the subcritical 
transition of a flow obeying the Navier-Stokes equations. It should be noted that several 
other low-dimensional models have been proposed to explain the onset of a turbulent 
regime for high Reynolds numbers (e.g. Gebhardt & Grossmann 1994, Baggett et al. 1995, 
1997). The dynamical system (1.1) has three stable equilibrium points including (0,0). 
The main feature of the system (1.1) is that for e « 1 the linearized evolution operator 
for the fixed point (0,0) is a highly-non-normaJ matrix that leads to a large transient 
growth of V {t) prior to an eventual exponential decay. It can easily be found that for 
the non-zero initial conditions u (0) = euo and v (0) = 0, the solution of the hnearized 
equations is of the form v(t) = uo{e~^^ — e~^^*), u(t) = euoe"^^'. The function v{t) 
achieves a maximum of order one, on a time scale of order £~^. Furthermore, although 
both eigenvalues are negative (Ai = —£ ; A2 = —2e), finite fluctuations with exceedingly 
low amplitude can excite the transition from the fixed point (0,0). The main problem 
here is to find the minimum amplitude of all fluctuations capable to excite this transition 
and its dependence on the parameter e of the form £°. The threshold exponent a is found 
to be 3 . This tells us that the basin of attraction of (0,0) shrinks very rapidly as £ —> 0 
(Chapman 2002). 

2. Non-normal dynamical system with noise 
One of the purposes of this paper is to understand how random perturbations can affect 

the dynamics of the non-normal system (1.1). We simply add two generic uncorrelated 
Gaussian white-noise terms to the right-hand side of (1.1). The dynamical system (1.1) 
can then be written in the form of the stochastic differential equations (Gardiner 1996) 

du = {-2eu + (u^ + v^) K)dt + (2S) ^ dWi (t), 

dv = {-ev + u-{u^ + v^)* u)dt + (25)^ dW2 (t), (2.1) 

where Wi (t) and W2 (t) are the uncorrelated standard Wiener processes. Here we assume 
for simplicity that the intensity of the noise parameter, 6, is the same for both stochastic 
terms. 

For the deterministic system (1.1) only small but finite initial perturbations can es- 
cape from the basin of attraction for a fixed point at the origin. In this case the main 
problem is to answer the question "What are the minimum amplitude of the form e" 
and the threshold exponent a for transition to turbulence?". In the stochastic case the 
key question is "What is the long-time effect of adding noise terms to the nonlinear non- 
normal djTiamical system?". Due to the highly sensitive way that non-normal systems 
are affected by random perturbations, we can expect that the presence of noise on the 
right-hand side of (1.1) may lead to a transition, even for zero initial conditions 

u(0)=0,    t;(0) = 0. (2.2) 

We beheve that this is physically significant since in practical situations random fluctu- 
ations may often be what induce the subcritical transition in fluid flow. To illustrate the 
stochastic sensitivity of the non-normal system (2.1), consider its finear approximation 

du = -2eudt + (26) ^ dWi (t), 

dv = {-ev + u)dt + {25)idW2{t) (2.3) 
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with zero initial conditions (2.2). This is a relatively simple stochastic dynamical system 
in which the variable u (t) is the Ornstein-Uhlenbeck process, with well-known statistical 
properties, while v{t) is the non-Markov random process whose properties can be easily 
found (Gardiner 1996). The second moments are very important statistical characteristics 
of the system (2.3), since they mimic the kinetic energy of fluid flow. One can find the 
following explicit representations for them: 

rm{t)^Eu\t) = ^n-e-'% 
2£ 

m2(t) = Eu{t)v[t) = —^e       + -^ 
■Set  ,     "   c-4et j ;;:_ 

^ ^6£2' 

^^ = 2^'        ^2 = 6i^'       ""^ = £ + 6?- ^^-^^ 

Mt) . EAt) = (4 - J)e- + ^e- - Ae- + ^ ^, 
where E denotes the expectation operator. The limiting values rui = limt_oo ruiit) are 

5      5 

Prom (2.4) we can see that owing to the non-normality of the system (2.3) as e -> 0 
for constant 6, all second moments tend to infinity. The stationary second moment ma 
exhibits the highest degree of sensitivity Even for very weak noise, say (J ~ e^ then 
fhs —» 00  as £ —> 0. 

It is instructive to investigate the effect that non-normality has on the probabil- 
ity of exit from the zero-attraction point. This problem is closely related to the fa- 
mous 'Kramer's exit problem' which concerns the escape of random trajectories of a 
stochastic dynamical system from the domain of attraction of the underlying determin- 
istic dynamical system (Gardiner 1996). We have calculated numerically the empirical 
exit probabilities of random trajectories from the neighborhood of the zero point U = 
{{u,v) : u^ + v'^ < 0.01} up to t = 10. The results in figure 1 demonstrate that even 
for a very small intensity of noise {S = 10"^) the exit probability pe is close to unity. In 
particular, for £ = 2"^ w 0.03 and J = 5 x 10"^ the exit probability is greater than 0.6. 
For 5 = 2 X 10"* the probability pe is greater than 0.8. For 5 = 10"^ this probability is 
very close to one. 

An analytical treatment of the stochastic dynamical system (2.1) is rather difficult, 
although some approximations are possible, and indeed useful (see (4.3) for the slowly- 
varying energy of the non-normal system). We have performed simulations of random 
trajectories of (2.1) for different values of e and 5. Our numerical results show that, either 
by increasing the intensity of noise 5 or by decreasing the non-normahty parameter e, 
the stochastic system (2.1) undergoes a series of phase transitions. We have found three 
qualitatively different regimes. For a fixed value of £, this phenomenon can be interpreted 
as a noise-induced transition. A detailed discussion can be found in the excellent book 
by Horsthemke &: Lefever (1984). 

Figures 2 and 3 illustrate these transitions in terms of stochastic trajectories of the 
non-normal dynamical system for e = lO'^ and 5 = 10"^ (figure 2), 6 = 10-^ (figure 3). 
For very small values of 5 {5 < 10~^^), we have observed that the random trajectory is 
concentrated around the equilibrium point at (0,0). As 5 increases, the trajectory then 
begins to become more concentrated in the vicinity of one of the non-trivial fixed points 
(Fig. 2). Further increase of the noise intensity parameter 5 leads to the stochastic orbits 
containing all three fixed points (Fig. 3). It should also be noted that these noise-induced 
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FIGURE 1. The exit probability Pc as a function of non-normal parameter £ = 2~*. Curves A, 
B and C correspond to 5 = 5 ■ 10-^ 2 • 10"^, 10-^ 

FIGURE 2. The stochastic trajectory for e = 10 ^,S - 10"'*; initial conditions: u{0) = 0 and 
v(0) = 0. 

transitions can also be analyzed in terms of the extrema of the stationary probability 
density pst(u,t;) (Horsthemke & Lefever 1984). 

3. Underlying Hamiltonian structure 

The behavior of the trajectories when the values of £ and S are small can be explained 
by the existence of a Hamiltonian structure in (2.1). If we introduce the Hamiltonian 
function 

H{u,v) = l{u' + v'f^-lu\ (3.1) 
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FIGURE 3. The stochastic trajectory for e = 10 ^,5 = 10 

then the dynamical system (2.1) can be rewritten as 

du -2endt + ^dt + {25Y dW^{t), 
av 

^dt + {25)UW2{t). 
ou 

(3.2) 

(3.3) 

dv = —evdt 

In the limits e -+ 0 and 5 -> 0, the system (3.2) becomes conservative, so 

du _dH_ du__    dH 
Hi ~ ai7'        dt~    du' 

and, therefore, H{u,v) = E = const. The phase trajectories u(t) and v (t) of (3.3) move 
along the level set 

(3.4) C{E) = {{u,v) : H{u,v) = i (u^ +,;2)5 _ 1^2 ^ E}. 

with the speed 
dH     dH (3.5) 

It follows from the existence of the Hamiltonian (3.1) that the trajectories are periodic, 
and that the period of the oscillations T (E) can be found to be 

\V{u,v)\-'ds, (3.6) T{E)= I 
JC{E) 

where the integral is taken along the level curves C (E). 
In figure 4 we plot the one-parameter family of curves generated by (3.4) that gives 

us the full phase portrait of the conservative system (3.3). There are three equilibrium 
points, at (0,0) and (±1,0). One can see that the phase portrait is similar to that of the 
Duffing equation without dissipation. Linearization of (3.3) at (1,0) and (-1,0) gives us 
the period 2iv. While moving out, the periodic trajectories have longer periods and tend 
to infinity as we approach the saddle connection. The situation is more compUcated in 
the presence of dissipative terms. An addition of the two terms -2eu and -ev changes 
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FIGURE 4. The phase portrait of the conservative system (3.3). 

the direction of the vector field in an alternative way, to that of the dissipative DufSng 
equation. Of course, the global effect is to destroy the closed orbits. In particular, the 
fixed point (0,0) becomes linearly stable, but the width of its basin of attraction decreases 
as e^. 

4. Stochastic differential equation for the energy 
In a further analysis of the effect of randomness and dissipation, it is of interest to 

consider the reduced equation for energy. In the general case (e 7^ 0, 5 :^0) the energy 
of the system E = H {u,v) is not a constant, but rather a random function of time. If 
we apply the Ito formula ioi E = H {v,u) (Gardiner 1996) we can obtain the governing 
equation for the energy, 

dE = {-2e—u - e—v + 5^^:^ + 5^:y^)dt 
du dv 9u2 dv^ 

+ (25)^ ^dW,{t) + (26)^ ^dW2{t). (4.1) 

It is clear that for small values of both the dissipation parameter e, and the noise parame- 
ter 6, after some transient period of time, the phase trajectories of (3.2) will be very close 
to the level curves C(E). There are three different families of periodic orbits, separated 
by the saddle connection (see Fig. 4). Let us denote those components of the level set by 
Ci (E) (i = 1,2,3). The overall dynamics of (2.1) can be viewed as a composition of a 
fast motion along the level curve Q (E) and of a slow motion normal to the energy levels 
with the possible transitions, for example, from Ci (E) to C3 (E). In this case one can 
eliminate the fast motion to derive an equation for the slowly-varying energy E {t). It is 
well known (Gardiner 1996) that the fast variables can be eliminated when there exists a 
stationary distribution function, independent of small parameters. Let us introduce the 
following normalized measure corresponding to the fast motion (Preidlin 1996) edong the 
energy-level curve Cj (E) 
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The equation for the energy E (t) can be derived as follows. Let us multiply the equation 
(4.1) by the measure (4.2), and integrate along the level curve d (E) (Preidlin 1996). 
The equation for E (t) then takes the form of a one-dimensional stochastic differential 

equation 

^^S,{E)-DdE)+a,{E)^, (4.3) 

where the rate of energy supply due to the noise is 

while the rate of removal of energy by dissipation can be written as 

The intensity of noise is 

a?(£) = ;p^/'       \V{u,v)\ds. (4.6) 

The details of the derivation of the above formula can be found in the book by Preidlin 
(1996). For very small values of e and 5, most of the probability is concentrated on the 
level curves Cj (E). We have in essence a deterministic motion with speed V along the 
level curves. In general, we have stochastically-sustained oscillations for which the energy 
generation Si (E) due to the noise, and the dissipation Dj (E), are in balance with the 
stochastic term, whose intensity CTJ (E) is a function of energy itself. 

5. Conclusions and future work 
In summary, we have investigated the effects of the additive Gaussian perturbations 

on a non-normal dynamical system mimicking laminar-to-turbulent subcritical transition 
both analytically and numerically. We have derived explicit representations for the second 
moments and found that the dynamical system with a non-normal transient linear growth 
is highly sensitive to the presence of weak random perturbations. We have calculated 
numerically the empirical exit probabilities of random trajectories from the neighborhood 
of a zero fixed point. We have found that even for very small values of the intensity of 
noise parameter {S = 10"^) the exit probability is close to unity. We have also found 
that an increase of the intensity of noise parameter, or a decrease of the non-normality 
parameter, will lead to certain qualitative changes in the behavior of the trajectories. 
This can be interpreted as noise-induced phase transitions. By using the Ito formula and 
the adiabatic elimination procedure, we have derived a stochastic equation governing the 
slow evolution of the energy of the system. 

We believe that the study of the impact of noise on non-normal dynamical systems 
is physically significant, since, in practical situations, random fiuctuations may often be 
what induce the subcritical transition in fluid flow. The transition appears to become 
an essentially random event. The generic feature of laminar-to-turbulent transition in 
shear flow is that it does not have a critical, reproducible Reynolds number (see Gross- 
man 2000). Regarding the model (2.1), it should be noted that its nonlinearity is quite 
different from that of the Navier-Stokes equations: therefore, it does not really describe 
the laminar-to-turbulent transition in fluid flow. However, it gives the general features of 
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such transition involving transient growth, and the interaction between non-linear and 
stochastic modes. The stochastic dynamic system (2.1) is fundamentally different from 
the deterministic one (1.1) that has only two degrees of freedom. We can regard (2.1) 
as an effective dynamical system with many degrees of freedom in which two variables 
u and V play the role of order parameters, while the stocheistic noise terms approximate 
other degrees of freedom and their influence on u and v. Further research is needed to 
identify the statistical characteristic of the noise terms in (2.1). 
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An analytical model for predicting airfoil 
self-noise using wall-pressure statistics 

By M. Roger t, S. Moreau t AND M. Wang 

1. Motivation and objectives 

Broadband self-noise or trailing-edge noise is due to the scattering of boundary-layer 
vortical disturbances into acoustic waves at the trailing edge of an airfoil. As the only 
airfoil noise contribution in a homogeneous stationary flow, it is a matter of primary 
interest when addressing the problem of the noise generated by fans, wind turbines and 
high-lift devices. Simple aeroacoustic prediction tools dedicated to traiUng-edge noise, 
that could be integrated in a design cycle, are a current need for manufacturers. In the 
context of industrial appUcations, a minimum degree of relevance is required, but the fine 
details of the scattering process are not expected to be reproduced exactly. A consistent 
model only has to provide reliable A-weighted levels, which means a reaUstic distribution 
of noise intensity with both frequency and angle of radiation, accmrate enough for a 
definition in terms of decibels. Such tools can be deduced firom analytical models and 
could be used in conjunction with incompressible flow computations, according to the 
acoustic analogy as stated by Ffowcs Williams & Hawkings (1969). 

As a result of the scattering of a boundary layer turbulent flow, self noise can be re- 
lated either to the vortical, hydrodynamic velocity field around the traiUng-edge or to the 
induced hydrodynamic pressure field on the airfoil surface. The first approach, based on 
the velocity field, is outlined by Ffowcs Williams k Hall (1970) and was apphed by Wang 
& Moin (2000) using large-eddy simulation results as input. The second approach, based 
on the induced wall pressure, has been developed and applied, for instance by Brooks 
& Hodgson (1981) and Amiet (1976), but rarely addresses the connection with compu- 
tational results. It is supported by experimental evidence, as pointed out by Brooks, 
Marcohni & Pope (1989) and Roger & Moreau (2002). 

The present work is an extension of Amiet's original formulation of trailing-edge noise 
based on fully analytical derivations. A back-scattering, leading edge correction is devel- 
oped, yielding a modified chordwise distribution of the acoustic sources induced by the 
scattering mechanism. Furthermore, a three-dimensional extension is provided. The full 
solution has the advantage of accounting for all the effects of a finite chord length. The 
study is aimed at predicting airfoil self noise from wall pressure fluctuations computed 
by incompressible LES. In that sense, the present formulation is an alternative to the 
one proposed by Ffowcs WiUiams & Hall (1970), and has the advantage that both the 
actual chord length and any subsonic motion of the surrounding fluid are accounted for. 

t Ecole Centrale de Lyon (ECL), Prance 
i VALEO Motors and Actuators, Prance 
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-2b 

I 

FIGURE 1. Flat-plate model of an airfoil with moderate camber and thickness. The 
boundary layer vorticity (thickness S) is represented by equivalent convected pressure 
fluctuations. 

2. Results 

2.1. Far-field power spectral density 

In the present analytical model, the airfoil is reduced to a flat plate with zero thickness 
and angle of attack, with a chord length c = 26 and a span L. The space is described 
by the streamwise coordinate x, the spanwise coordinate y and the normal z coordinate. 
The trailing edge is at a; = 0 (figure 1). The fluid is moving uniformly with velocity U 
along the chordwise direction x > 0. The corresponding Mach number M = U/co with 
Co the speed of sound is assumed subsonic. The acoustic wavenumber k = W/CQ is related 
to the convective wavenumber K = uj/U by the relationship k = KM. 

The power spectral density of the far field sound pressure radiated from the airfoil 
due to the lift fluctuations induced by trailing-edge scattering can be expressed in the 
following way, extending the results of Amiet (1975): 

jpp ^(^-^f)} Ii^,K,) 

with: 

dK2 

(2.1) 

sine (t) 
sin (t) 

In this formula, / is the radiation integral associated with a two-dimensional Fourier 
component of the incident hydrodynamic wall pressure field, with hydrodynamic wavenum- 
bers Ki and K2 respectively in the streamwise and spanwise directions. This incident 
field is assumed frozen when convected past the trailing edge, which selects the value 
of the streamwise wavenumber Ki = UJ/UC- UC is the convection speed, related to U by 
the factor a = U/Uc > 1. 5o = y^x^ + ^'^{y'^ -\- z"^) is the corrected distance to the far 
field point x, with /3^ = 1 — M^, and (~) stands for quantities made nondimensional by 
multiplying by h. EQ is the energy of the incident wall pressure fluctuations at angular 
frequency w for a given spanwise wavenumber. It is deduced from the full cross spectral 
density function of the incident wall pressure Ii{K\,K2,u}): 

no(^,iiTa) = j°^ IliKi,K2,u>)dKi (2.2) 

In (2.2), n represents a huge amount of information hardly tractable in experiments. 
Only accurate numerical methods, such as Direct Numerical Simulation or Large Eddy 
Simulation, are able to provide the necessary data by explicitly computing the wall 
pressure fluctuations associated with most of the turbulent eddies carrying the energy 
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of the vortical flow. Yet the full statistics 11 appears not to be necessary for the present 
acoustic formulation. Indeed let's introduce: 

U{K^,K2,u;) = ^Jj ^vp{rii,V2,u^)e'^'''''^'''''^dVidr,2 (2.3) 

where Qpp is the cross-spectral density between signals at two points on the airfoil with 
separations 771 and 772 in the streamwise and spanwise directions. Then let's define the 
functions A and B as in Singer (1996): 

.(,,„, = a^ .„.„, = 5.^ (2.4, 

where ^pp is the wall pressure spectrum corresponding to the incident hydrodynamic 
fluctuations only, assumed statistically homogeneous in the trailing-edge area. Without 
any further assumption on the wall pressure statistics, equation (2.2) then becomes ac- 
counting for (2.3) and (2.4): 

Uc J-00 ^^   •'-00 
^772 

The more tractable parameter in connection with model experiments is the wall pres- 
sure field coherence between two points on the airfoil surface: 

Therefore, the coherence can be identified to the squared chordwise and spanwise 
correlation functions A and B, respectively, as the separation r?2 or 771 is set to zero. If 
the following corrected correlation length ly{u;) is introduced: 

/•OO 

ly{K2,u)) =   /     y/l^{0,772,w) cos(iir2772) dr]2 
Jo 

a final expression can be derived for the energy of the incident wall pressure fluctuations 
at frequency LJ for a given spanwise wavenumber: 

no(^,ii:2) = I %pi^) ly{K2,u>) (2-5) 

Functions ^pp and ly are the minimum informations about the wall pressure statistics, 
needed for acoustic calculations. They are easy to measure on a model airfoil by means 
of a set of wall pressure transducers, spanwise distributed at a short distance upstream 
of the trailing edge. Such transducers, when located beneath a fully turbulent boundary 
layer, measure a priori the full wall pressure field, including the acoustic contamination 
from the traiUng-edge scattering. However the acoustic pressure is typically 20 decibels 
below the hydrodynamic pressure associated with the convected turbulence. Thus the 
measured pressure can be assimilated to the hydrodynamic pressure only in this case. 
This is confirmed by the values of the convection speed measured by Roger & Moreau 
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(2002). As a consequence, trailing-edge transducers provide the same information as that 
computed in incompressible LES. 

2.2. Radiation integral 

Calculating the distant sound field with (2.1) still requires the computation of the 
radiation integral J(Q/UC, K2), which holds for a unit gust of reduced wavenumber vector 
{Ki = Q/UcK^), at angular frequency w. This vector defines an incident hydrodynamic 
oblique gust of unit pressure: 

Po = e-'^>^ e-'^=^ 

with X = x/b and Y = y/b, leading to a three-dimensional scattering problem. The 
equation for the corresponding scattered pressure is: 

ay    9V    ay 
dx^       dz^       dy^ -^(^''s)^-" 

together with the boundary condition of no cross-flow on the airfoil surface and the 
cancellation of PQ in the wake according to the Kutta condition. The solution is sought 
in the form: 

p'{x,y,z,t) = P{x,y,z)e''^' 

Pix,y,z) = p{x,z)e^^''^^^^^^e-'^^y = p{X,Z)e'^>'^ e''^^^ 

with p. = KM/0^. Introducing Z = I3z/b, the equation becomes: 

9X2 + af2 + «^P = 0     inwhich     R^ = p.^ - -^ (2.6) 

with 

^(X,0) = 0 -2<X<0 

p{X,0) = -e-iifir+m)X x>Q 

Supercritical gusts, corresponding to positive values of K^ (i.e. real R = y/p? - K^//3^), 
thus a hyperbolic equation, are known to radiate efficiently, whereas subcritical gusts, 
for which K = -iK' is imaginary (K' = i/(ir|//32) - p?), are less efficient. The differ- 
ential equation for p has no exact solution but can be solved by successive iterations. 
The first iteration is performed by assuming that the airfoil extends towards infinity in 
the upstream direction instead of the leading edge location X = -2. A Schwarzschild's 
problem is obtained, whose basic solution is summarized in the appendix. This first solu- 
tion has been derived by Amiet (1976) in the case of two-dimensional gusts. Later Amiet 
(1978) refined the solution to account for the radiation effect of the incident pressure. 
The corresponding scattered field must be corrected to behave properly upstream. This 
is made by adding a leading edge back-scattered field ensuring a zero total disturbance 
potential for X < -2. The correction is calculated assuming that the airfoil now extends 
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towards infinity in the downstream direction from the leading edge, which leads to an- 
other Schwarzschild's problem by a straightforward change of variables. The technique 
has been described by Amiet (1975) dealing with the similar problem of the noise gen- 
erated when upstream turbulence impinges on the leading edge of an airfoil. Generally 
speaking, the Schwarzschild's solution holds for the pressure disturbance when applied 
at the traihng edge and for the velocity potential (f> when applied at the leading edge, 
with: 

The new items with respect to the original papers are the additional leading edge 
back-scattering correction for trailing-edge noise and the extension to three-dimensional 
scattering, accounting for subcritical gusts. The Schwarzschild's iterative procedure pro- 
vides the value of p on the airfoil surface, used to calculate the radiation integral I. Only 
the final results are given here. 

I can be written as 7 = 7i -I- /2) where /i stands for the main scattering firom the 
traihng edge and I2 for the badc-scattering from the leading edge. 

The first term for a supercritical gust, already obtained by Amiet (1978) in the two- 
dimensional case, is given by: 

^1 = -^{{l + i)e-''''\I^^E*[2{B-C)] - {l + i)E*[2B]\ (2.7) 

with: 

f,2iC   ( 

C = .K"i -/I (-|-- M j and B = Ki + Mp + R 

The correction term derived in the present work is: 

l2 = H ({e^^« [1 - {l + i)E*{AR)]Y - e2«-0 + i[D + K + Mfi - K]G)      (2.8) 

with 

G = (l + e)e^(---)2^:^ + (l-e)e^(—)^H^±|^ 

2{D-2K) ^    '        2{D + 2R) ^    ' 

+ ill ME*i2D) '"(^ + '^(^ " ')       ^~'^^^ + ') 
2    \ D D + 2K D-2R 

and 
„      (l + i)e-''^''(l-G2) 

2y/^{a-l)KVB y/1 + 1/(4K) 

e = A/ ^ Ai = Ki + Mp. + K A = K + Mp. + R 
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FIGURE 2. Profiles of the radiation integral |/| in nondimensional variables, for radi- 
ation angles B (in 20° increment) with respect to the flow direction in the mid-span 
plane. M = 0.05. regularization off, — regularization on. 

In both equations (2.7) and (2.8), the complex function E* stands for a combination of 
Eresnels integrals C2 and ^2 given in Abramowitz & Stegun (1970) and is defined as: 

E \X)  =    r ■^dt = C2{x)-iS2{x) 
Jo     V^TTt 

{'Y stands for quantities whose imaginary part needs to be multiplied by the empirical 
corrective factor e. The latter has been determined numerically to yield an analytical 
form for the back-scattering radiation integral. 

Equivalent results have been derived for a subcritical gust, leading to the following 
expressions: 

and 

with 

-2iB 

B H' [A' (e^^« [1 - erf(Vi^)] - l) -K V^ (^ + (M - |)/2) ^°(^) } 
(2.10) 

i/' = 
(i + i)(i-e'2) 

V A' 2y/Tr{a-l)K^^ 

A\ = Ki + Mji-iK' A' = K + Mji-iK' 

In both equations (2.9) and (2.10), a new complex function $° is introduced that is 
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FIGURE 3. Directivity patterns for parallel gusts. Prom left to right and top to bottom: 
fee = 1,5,10,50 for comparison with Howe (2001). M = 0.05, K2 = 0. — full solution, 
-.- main term, — back-scattering (small lobes at center). 

related to the complex E* by: 

*°<^>=;^r vs dz and $°(^/ix) = y/2e^''f'^E*{x) 

Sample non-dimensional ii'2-profiles of / for an observer in the mid-span plane {y = 0) 
are given in figure 2. A regularization procedure has been applied to smooth out the sharp 
cuts in the profiles between the supercritical and subcritical expressions imderstood as 
asymptotic solutions. The cuts are due to the breakdown of the analytical solution as 
the frequency parameter R or R' becomes exactly zero. The procedure is achieved by 
matching linearly the values of the derivative dI/dK-2, from both sides of the cuts and 
then re-calculating the profile. Subcritical gusts, for higher values of K2 {K2/{l3p,) > 1), 
are cut-off in the sense that their efficiency is lower than the one of supercritical gusts 
and decreases with increasing if2- However their contribution to the sound field is not 
zero. 

Calculations are made here with c = 13 cm and M = 0.05. At 200 Hz {kc = 0.48), \I\ 
is a slowly decreasing function of 6, whereas at 1000 jff^; (fee = 2.4), it increases with 6 
until 100° and then decreases. The dashed horizontal segment in the right plot shows the 
level at 160° for small K2. 

Typical directivity patterns in the mid-span plane for parallel and supercritical, oblique 
gusts are plotted in figures 3 and 4, respectively. The back-scattering has a noticeable 
effect on the radiation of parallel gusts only at low frequencies, as shown in figure 3. 
These results agree very well with similar calculations by Howe (2001) in the case of 
vanishing Mach number for hydroacoustic applications. They correspond to the left, flat 
part of the plots in figure 2. Figure 4 shows the effect of gust obliqueness on the fuU 
solution. Increasing K2 makes the radiation to beam in an oblique direction upstream, 
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FIGURE 4. Directivity patterns for oblique gusts. Prom left to right and top to 
bottom: fee =1,5,10,20. M = 0.05, i^zA/S/i) = 0.05—, 0.5 - - ,0.85 — . 

more shaxply as frequency increases. This effect corresponds to the hump in the radiation 
profiles of figure 2 for IQOQHz. 

A simplified version of the present formulation has been previously reported by Roger 
& Moreau (2002), for an observer in the mid-span plane. The squared function sine of 
formula (2.1) was approximated by a Dirac delta function, which is valid for large aspect 
ratios. Spp, ^pp and ly were measured separately on a mock-up in an anechoic open- 
jet wind tunnel, in order to evaluate the ratio Spp/{^pply). The latter was compared 
to its theoretical value according to the simplified equation. The measured directivity, 
integrated over the frequency range attributed to broadband self noise, was also compared 
to averaged calculations. Sample results are reported in figure 5. The airfoil chord makes 
a 13° angle with respect to the direction of the mean flow. An encouraging agreement is 
found, suggesting that the approach is reliable. The remaining discrepancies can be due 
to either the difficulty of evaluating the convection speed and spanwise coherence length 
at all frequencies of interest in the experiment, or to the simplification in the analytical 
model. This motivated the present research. 

3. Future plans 

The present theory only addresses the question of the transfer function between the hy- 
drodjTiamic wall pressure and the far field acoustic pressure. The wall pressure statistics 
defined by ^pp and ly and needed as input must be known from either flow measurements 
or computations. It is not available from RANS calculations that are routinely used by 
most industrial manufacturers. However, it can be provided by incompressible LES. 

The next step, still in progress, is to improve the validation procedure and to use 
LES results to compute the aforementioned statistical parameters. More precisely, a new 
experiment with an increased width of the open jet has been designed at Ecole Centrale 
de Lyon, in order to minimize the installation effects pointed out by Moreau et al (2001). 
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o     o   experiment, set 2 
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Angle to the incident mean flow 

FIGURE 5. Measured versus predicted directivity of the trailing-edge broadband noise 
due to turbulent boundary layers. Negative angles correspond to an observer facing 
the suction side. 

A simulation of the experimental mean flow has been made with the help of a RANS 
code. This flow field will be used to provide boundary conditions for an LES, carried 
out in a smaller domain within the potential core of the jet. First, the LES results will 
be compared to the measured wall pressure statistics. In the second step, the radiated 
sound wiU be calculated using (2.1) and compared to the sound actually measured in the 
experiment. 

4. Appendix 
Let # be a two-dimensional scalar field solution of the following wave problem: 

$(x,0) =/(x) x>0 

^(x,0)=0 x<0 

Then for any x < 0: 

1      /.oo 

#(x,0) - -  /     G{x,i,Q)f{i)di 
TT  Jo 

with: 

G(x,C,0) 

This result, known as Schwarzschild's theorem and given in Landahl (1961), leads to 
mathematical solutions that are equivalent to the ones obtained by Adamczyk (1974) 
using the Wiener-Hopf technique. Strictly speaking, the theorem holds for half-plane 
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problems. When applied to an airfoil with finite chord length, it must be used within 
an iterative procedure involving alternative corrections. According to Amiet (1975), the 
first two iterations are enough in the problem of the noise generated by the impingement 
of upstream turbulence on an isolated airfoil. The same is assumed to hold here. The 
iterations are referred to as main scattering and back-scattering in the text. 
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Turbulence modeling in an inunersed-boundary 
RANS method 

By Georgi Kalitzin AND Gianluca laccarino 

1. Motivation and Background 
Virtually all the applications of the Immersed Boundary (IB) technique have been 

in the low-Reynolds number regime (up to 10^) either as Direct Numerical Simulations 
(DNS) or Large Eddy Simulations (LES). For those applications simple off-boundary 
conditions (usually based on Unear interpolations) are used for the velocity fields to 
account for the effect of the immersed boundary on the flow field: see Fadlun et al. 
(2000) and Verzicco et al. (2000). The application of IB to industrially relevant turbulent 
flows at high Reynolds numbers requires its adaptation in the framework of the Reynolds- 
Averaged Navier-Stokes equations. 

When IB is used in conjunction with RANS additional care must be devoted to the 
application of suitable turbulence models. In particular, classical approaches (e.g. models 
of fc-e type) are based on differential equations for turbulent scalars that characterize 
a velocity and a length scale which, in turn, define the eddy-viscosity. Those quantities 
typically exhibit large gradients and local extrema in the near vicinity of solid walls; 
for example the turbulent kinetic energy has a peak in the logarithmic layer and decays 
quadratically towards solid walls. It is evident that the straightforward application of 
an off-wall linear interpolation would introduce errors in the representation of such a 
quantity; on the other hand, even at high Reynolds numbers, provided that the grid 
resolution is suflicient, a linear interpolation for the velocity would still be consistent 
with the hnear behavior of the velocity in the viscous sublayer. 

Previous investigations by Majumdar et al. (2001) of more sophisticated off-wall bound- 
ary conditions, mainly for flows at low Reynolds number, did not demonstrate a conclu- 
sive advantage over the simpler linear interpolation. Furthermore, a hnear interpolation 
scheme can easily be recast in a fully-impHcit form, thus introducing no time step hmi- 
tation or additional stiffness for steady-state problems. The impUcit treatment of more 
sophisticated interpolation schemes (quadratic, inverse-distance based, etc.) introduce 
non-Hnearities that may have an impact on the robustness and overall stabifity of the 
computational procedure. 

In this paper we focus on the development of IB conditions for turbulence models 
and the initial vaUdation of an IB RANS solver. The application consists of a turbine 
blade passage for which detailed DNS results are available (see Kalitzin et al. (2002)). 
The paper compares the IB technique with a standard body-fitted method to isolate the 
effect of the off-wall boundary conditions on the results. A three-dimensional test case of 
a turbine blade with a 10% tip gap is included to demonstrate the potentials of the IB 
technique for more compUcated situations. 

A major concern in applying the IB technique to high-Reynolds number flow is the 
resolution of thin boundary layers on curviUnear bodies using Cartesian grids. This res- 
olution issue will be addressed in future work with a grid-refinement technique. The 
present paper considers coarse-grid solutions to demonstrate that smooth surface distri- 
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butions of pressure and friction can be obtained with the present IB technique. To model 
turbulence, we first considered the model of Spalart and Allmaras (1992) and the k-g 
models, discussed by Kalitzin (1997) because of their simple wall boundary conditions. 
The fc-w model of Wilcox (1993) was implemented at a later stage. The test case con- 
sidered is not sensitive to the turbulence model, especially for the grid used. Thus, the 
objective of considering several turbulence models is to show that these models can be 
used in conjunction with the IB technique. 

2. Flow solver and turbulence models 
The steady-state incompressible Reynolds-averaged Navier-Stokes equations are solved 

using a second-order, cell-centered finite-volume scheme on Cartesian non-uniform grids. 
The momentum equation is solved sequentially for each component of an intermediate ve- 
locity. The divergence of this velocity field provides the source term of a Poisson equation 
for a pressure correction (SIMPLE procedure, Vandoormaal et al. (1984)) which enforces 
a solenoidal velocity field. The eddy viscosity is obtained fi'om an one-equation or two- 
equation turbulence model which is solved separately from the mean flow. The equations 
are linearized and solved in a fully-implicit fashion, resulting in a linear algebraic system 
of the form: 

°-v'l>T'+      E      "W'-'^-S'; (2.1) 

where ^ is either one of the velocity components, the pressure or a turbulence variable. 
While the usual boundary conditions (inflow, outflow, periodicity and solid walls) are 
applied at the boundary of the computational domain, the curvilinear solid body is placed 
entirely or partly within the computational domain and immersed using the IB procedxire 
described in section 2.1. The system is then solved using a LU-type decomposition or a 
Krylov iterative solver; the computer program is based on Ferziger and Peric (2002). 

2.1. Immersed Boundary Approach 

The IB-methodology is based on the work of Fadlun et al. (2000) and Verzicco et al. 
(2000). It has been suitably modified to work in the current RANS environment. In a 
preliminary step, a given geometry which is described with a closed polygon in 2D and 
an STL file in 3D is overlaid on a Cartesian non-uniform mesh. The computational cells 
in the fluid and in the solid body are tagged as internal and external cells, respectively. 
The cells containing both fluid and solid body are tagged as interface cells (figure 1). 
In this phase, care must be taken to ensure that the layer of interface cells completely 
surrounds the immersed surface. Once all the cells are tagged, the distance from the wall 
is computed if needed for later use by the turbulence models. 

The equations that is solved for the variables (j> in the interface cells is: 

""'^p^'+      E      "r^r"^' = 0 (2.2) 
2=w,e,5,n,6,t 

where the a's are the interpolation weights. These weights are computed firom the base 
cells (i.e. the internal cells) and the target cells (i.e. the internal ceUs surrounding each 
base cell). The base and target notation is commonly used for Chimera grids. The weights 
are computed once, at the start of the calculation, and stored. 

Equation (2.2) represents the discrete form of the direct-forcing approach proposed by 
Fadlun et al. (2000). The interpolation is applied to the velocity components and to the 
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^r I INTERFACE I 

FIGURE 1. Result of the cell-tagging procedure for the Immersed Boundary Technique 

turbulent scalaxs. The pressure equation is not modified and no boundary conditions are 
enforced at the immersed boundary. This has proven to be effective in producing smooth 
pressure distributions, even for thin airfoils such as the one presented in the Results 
section. Alternative treatments of the pressure have been attempted but further analysis 
is required to identify improvements to the current approach. 

2.2. Spalart-Allmaras turbulence model 

The model of Spalart and Allmaras (1992) exhibits good convergence properties and has 
a remarkably accurate response to pressure gradient. It consists of one transport equation 
for a modified eddy-viscosity, P: 

u ■ grad i> = — \ div {{u + v) grad u) + Cb2{ grad v ■ grad u)\+Q (2.3) 
Cfc3 L J 

in which the source term Q is: 

Q = C6i(l - ft2)Su + {^ft2 - c^iU) (^2) (2-4) 

The eddy viscosity is: 

fit = pj>fvi (2.5) 

The model damping functions, auxihary relations and trip term are defined as: 

fvi=   s^^   3,    fv2 = l-,Jl,   ,    X=5^ (2.6) 

i 
r 1 -I- /-.. o** 1 l + C^sH' _       _   ,   -      /„6 

5® + C^3^ 
g = r + c^2{r^-r),    ^ = j;^ (2-7) 

V 
S = S + i^fy2,     S = v/2fiyfiy,     /t2 = Ct3exp(-Ct4X^) (2.8) 

in which d is the distance to the nearest wall, K the von Karman constant and S the 
vorticity expressed in terms of the rotation tensor fijj = ^(sx^ ~" ^)' Finally, the model 
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closure coefBcients are: 

C6i= 0.1355,    C62 = 0.622,    ctg = 2/3,    c„i = 7.1 (2.9) 

c„i = ^ + ^-^,    c„2=0.3,     c„3=2,    ct3 = 1.2,    ct4 = 0.5 (2.10) 
K^ Cb3 

The wall boundary condition is: 

ut = 0. (2.11) 

2.3.  Wilcox k-u} model 

The k-u model of Wilcox (1993) is implemented in its original form. The 1998 version of 
the model (see 2nd ed.) contains certain correction terms which will be considered at a 
later stage. The transport equations for the turbulent kinetic energy k and the specific 
dissipation rate u a e/k are: 

d{pUik)       d 

dxi dxi 

d{puiuj) _   d 

dxi dxi 
The eddy viscosity is: 

(Tu   OXi 
+ Pk- pkw, (2.12) 

(Tu   OXi 

u . 
+ ajPk - PfxJ^. (2.13) 

/it = P- (2.14) 

The model coefficients are: 

a^ = 2.0, /3* = 0.09, a = 5/9, /3 = 0.075 

The wall boundary condition for k is: 

fc = 0. (2.15) 

The specific dissipation rate tends asymptotically to infinity at the wall as ~ l/j/^. 
Wilcox (1993) describes the numerical errors associated with the numerical integration 
of w up to the wall. Menter (1993) suggested to use the following boundary condition: 

where yi is the distance firom the wall to the center of the first cell above the wall. 

2.4. Near-wall behavior 

This section focuses on the near-wall behavior of the turbulence models presented above, 
in particular on the treatment of the wall boundary condition in the framework of the 
immersed boundary. 

The modified eddy viscosity f? is zero at the wall and it has the property of varying in 
a nearly linear fashion firom the wall throughout the law-of-the-wall layer thus decreasing 
the sensitivity to grid resolution and wall clustering (Durbin and Pettersson Reif (2001)). 
The linearity of i> makes it straightforward to implement the Spalart-Allmaras model with 
the immersed boundaries, using in the interface ceUs the same linear interpolation stencil 
used for the velocity components. Inside the body the modified eddy viscosity v is set to 
zero. 

The turbulent kinetic energy k and the specific dissipation rate w in the k-u model 
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vary in the viscous sublayer as ~ y^-^^ and ~ l/y^, respectively. At the current stage the 
linear interpolation method is applied directly to k. This may, however, not be sufficiently 
accurate, and further investigation is required, a; is set in the interface cells to the value 
computed with (2.16). Some of the cell centers may lie exactly on the wall, which would 
lead to undefined values in those cells. The minimal distance y in equation (2.16) is 
limited by an arbitrary small constant which could be related to the Reynolds number. 
This basically cuts off the ui value at the wall. In the cells inside the body, o) is set to the 
value defined by this arbitrary constant. 

In an alternative approach, we investigate the transformation of the w-equation to a 
different independent variable that is more suitable for use with immersed boundaries. 
Kalitzin (1997) suggests recasting the w-equation in terms of the variable g = l/y/^*u: 

then 

dxi dxi ^"^     Cg dxi 

In the viscous sublayer g varies linearly with the distance to the wall. At the wall g is 
zero, and the interpolation stencil used for the mean velocities can be appUed in the 
interface cells. 

In the continuous space the above transformation leads to identical eddy viscosity 
values, whereas when the discretized equations are solved this is not the case. Numerical 
dissipation is in particular influential in regions of large gradients and poor resolution. 
g increases away from the wall as shown for the flat plate in figure 2b. However, the 
outer part of the boundary layer is usually less resolved than the near-wall region. The 
diffusion of g from the free stream into the boundary layer is in contrast to u; diffusing 
from the boundary layer to the freestream. To investigate the effect of this, the fc-o; and 
k-g models have been combined into a two-layer formulation (hybrid model) where the 
latter is used only in the vicinity of solid walls. 

2.5. Implementation of the hybrid model 

At the start of the computation, each cell is marked with an integer array 7 which 
identifies the equations to be solved. In the near-wall region, where the g equations is to 
be solved, 7 is set to 1, elsewhere it is set to 0. The distance to the wall is used to define 
the near-wall region. The impHcitly-discretized turbulence equations can be written as: 

<^P+'+      E      '^?<t>7^^ = RHS; (2.18) 
l=w,e,s,n,b,t 

where the variable 4> is g ox w depending on the array 7. The coefficients a" and the 
right hand side RHS^, which depend on the variable 0" from the previous iteration n, 
are computed according to the g- or w-equation, respectively. Thus, the source term S^ 
which is included in RHSp is computed as: 

The convective and diffusion terms contain the dependent variable from two adjacent 
cells. The dependent variable in the cell I adjacent to cell p is computed from: 
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FIGURE 2. (a) Turbulent kinetic energy and (b) length scale variable for flat plate ( k-u, 
 k-g, o hybrid (every cell centered value plotted)) 

with Tgg = ')j,'yi; Tg^ = 7p(l - 7^); Tu,g = (1 - 7p)7i; ^uw = (1 - 7P)(1 - li)\ Only one 
of these indicators is non-zero and equal to one. In the case of an interface cell, Tgg and 
r^w are zero and i^" is converted into 4>i- 

Iniplicitness at the interface is achieved by modifying the coefficients a" with a" = 
0''i4''i/4''i\ only at the interface af is not equal af. At the interface the coeflBcient af is 
ap = a'luS^jg'^ and af = dJig'^ld^ for V^g = 1 and Vg^ = \, respectively. If the interface 
is close to the wall, the algebraic system becomes unstable as w tends to infinity and g 
to zero. Therefore lo is treated explicitly at the interface: 

^^-^r' ;;"^"+i (i-r„,) = 5;-ar,Arr, ijjg (2.21) 

Figures 2 and 3 show the results of a calculation of flow over a fiat plate with the fc-w, k-g 
and the hybrid model. The turbulent kinetic energy in figure 2a and the velocity profile 
in 3a are almost identical although the shear stress at the wall is slightly smaller for 
the fc-w model, resulting in a larger i7+ in the defect layer. Figure 2b demonstrates the 
second scalar of the hybrid model following g near the wall and switching at a prescribed 
location to w. The convergence is very similar for all three models as shown in figure 3b. 

2.6. Wall models 

High near-wall grid resolution is usually required to perform RANS simulation using the 
discussed turbulence models; the accepted rules in meshing turbulent boundary layers 
are: (i) the j/+ of the first cell center should not be greater than 1 and (ii) about 20 
cells should be located inside the boundary layers. A careful selection of tiu-bulence 
model might reduce those restrictions. However, it is reasonable to expect that for high 
Reynolds numbers Cartesian mesh will not fully resolve the boundary layers. Computing 
skin friction in the usual way on such grids may result in values incorrect by several order 
of magnitude. Therefore, the velocity fields are post-processed using a wall model of the 
form: 

u/ur = hn{l + Ky+) + c(l - e-y^/''^ - ^e"*^*) (2.22) 
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FIGURE 3. (a) Velocity and (b) convergence of L2 norm of velocity residual for flat plate 
( k-u, k-g, o hybrid (selected values are plotted)) 

c = -m(—) 
K K 

(2.23) 

(2.24) 

where K, E and d+ assume the values of 0.4187, 9.793 and 11 respectively. This expression, 
due to Reichardt (1951), reproduces the logarithmic layer and the linear sublayer with a 
continuous switch in the buffer region. 

The formulation (2.22) is used to compute u^ using the (tangential) velocity ti at a 
certain distance {5) from the immersed surface (this de facto corresponds to the creation 
of a body-fitted grid Une). The friction velocity u^ and the formulation (2.22) are used to 
estimate the tangential velocity in the interface cell (at a distance Si < S). Note that, if 
the interface cell is very close to the surface, the above approach returns a linear velocity 
interpolation consistent with the standard immersed boundary technique. The choice of 
the distance S is obviously critical for the application of this procedure. Preliminary 
results have been obtained using S equal to the largest distance from the wall in all the 
interface cells. 

3. Results and disciission 
The IB/RANS solver is applied to turbulent flow inside the T106 turbine blade passage. 

This test case has been studied extensively using DNS for various inflow conditions 
(Kalitzin et al. (2002)). The focus of the present study is to investigate the feasibility 
of the IB approach for this flow, and its accuracy in representing surface quantities like 
pressure and skin friction. The representation of the latter using the IB-approach has 
not been discussed previously in the literature. Comparison are made with body-fitted 
results obtained with FLUENT and the DNS data for a turbulence-free inlet. 
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FIGURE 4. (a) Computational domain and (b) computational grid 186 x 110 
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FIGURE 5. 

(a) 

Comparison of the velocity magnitude in the blade passage, (a) DNS, (b) Immersed 
Boundary / SA model and (c) Body-fitted / SA model. 
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FIGURE 6. 

(a) 

Comparison of the pressure coefficient in the blade passage; (a) DNS, (b) Immersed 
Boundary / SA model and (c) Body-fitted / SA model. 
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FIGURE 7. Turbulent kinetic energy in the blade passage; (a) DNS, (b) Immersed Boundary / 
k-uJ model, (c) Immersed Boimdary / k-g model. 

0.03 r 

FIGURE 8. Surface pressure distribution (left), skin friction distribution (right), a DNS, 
 Immersed Boundary / SA model Body-fitted / SA model. 

0.03 r 

FIGURE 9. Surface pressure distribution (left), skin friction distribution (right). ■ DNS, 
 fc-w model, k-g model,  hybrid model. RANS is with Immersed Boundaries. 
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FIGURE 10. Convergence history for IB method. Velocity (left), Velocity divergence (right). 
 fc-w, k-g,  hybrid, SA 

FIGURE 11. Velocity distribution in the wake of the three-dimensional blade with 10% tip gap 
showing traxies of a vortex and trailing edge separation, IB method. 

FIGURE 12. Friction lines on the surface of the three-dimensional blade: (a) suction side (b) 
pressure side, IB method. 
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A sketch of the computational setup and the grid is shown in figure 4. The IB and 
body-fitted calculations are carried out on a Cartesian mesh of (186 x 112) cells and 
a comparable unstructured mesh of about 20,000 elements, respectively. The Reynolds 
number is Re = 148,000. The T106 case is extremely challenging for the current IB- 
approach because of the large pressure difference between the suction and pressure sides 
of the blade. The airfoil is extremely thin and only a few cells (ranging fi-om 4 to 15) are 

inside it. 
Contours of the velocity magnitude are shown in figure 5. The overall qualitative agree- 

ment among the DNS, the IB and the body-fitted RANS calculations is satisfactory, even 
though the latter two methods predict a thicker boundary layer towards the trailing edge 
on the upper side of the airfoil. This is caused by the under-resolution of the boundary 
layers. However, the agreement between the IB and body-fitted results is good. Figure 
6 demonstrates that the IB technique is able to predict accurate pressure distributions 
in the passage. The region near the leading edge is particularly challenging for the IB 
method due to the sharp pressure gradient and strong surface curvature. The comparison 
of the turbulent kinetic energy contours to the DNS, shown in figure 7, is satisfactory 
although the DNS predicts a higher level of turbulent kinetic energy on the upper side 
of the airfoil. Transition is missed by the RANS simulations. 

A quantitative assessment of the IB method is shown in figure 8. The wall pressure 
distribution agrees well among the DNS, the IB and the body fitted RANS calculations, 
the latter two using the Spalart-Allmaras model. Differences among the skin friction 
distributions are more substantial. The RANS simulations do not show the sharp increase 
in the final 10% portion of the blade, which is caused by transition. Interestingly, the 
IB calculation shows Mction levels that are overall closer to the DNS, especially on the 
lower side of the airfoil. This might be due to differences in the implementation details 
of the Spalart-Allmaras model or to differences in the post-processing. 

Figiure 9 shows wall-pressure and skin-friction distributions for the k-u variants. The 
hybrid model has been run with the ^-equation in the near-wall region wrapped around 
the blade. This layer is 0.1 Cj thick, where Cx is the axial chord of the blade. Only shght 
discrepancies are observable in the skin friction, on the upper wall near the trailing edge. 
The pressure is slightly better predicted than using the Spalart-Allmaras model. 

The convergence of the IB method is plotted in Figure 10. The steady state is axihieved 
in about 2,000 iterations. The IB interpolation has no negative impact on convergence 
to the steady state. 

The flow around a three-dimensional version of the blade geometry, embedded between 
an endwall and a tip gap of 10% of the blade chord, is shown in Figure 11. This flow 
was computed to demonstrate the potential of the IB method for complex flows. The tip 
gap adds substantial complexity to the flow with the formation of a strong tip vortex. 
The skin-firiction Unes on the blade surface, shown in Figure 12, reveal that the three- 
dimensionality of the flow starts at 50% span. The flow separates at the trailing edge 
and there is a strong tip leakage flow from the pressure side to the suction side. 

The main objective of future work is the evaluation of the accuracy of the present IB 
approach. A local grid refinement wiU be implemented to resolve of the boundary layers. 
Future work will also include an investigation of coarse grid behavior of turbulence models 
in conjunction with the linear interpolation procedure of the IB method. 
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Skin-friction estimation at high Reynolds numbers 
and Reynolds-number effects for transport aircraft 

By   A. Crook 

1. Motivation and objectives 
Accurate performance estimation is essential for any aircraft, either civil or military. 

Although both types of aircraft will operate at transonic cruise conditions for a portion 
of a typical flight, the civil transport aircraft is largely optimized for this condition above 
all others. 

The purpose of this research brief is to conduct a brief review of skin-friction estimation 
over a range of Reynolds numbers, as this is one of the key parameters in performance 
estimation and Reynolds number scaling. If it is concluded that the available data are of 
insufficient quality, it is proposed to undertake an experiment to measure incompressible 
fiat-plate skin friction directly over a large range of Reynolds numbers up to Reynolds 
numbers representative of flight conditions. 

The flow around modern aircraft can be highly sensitive to Reynolds number. Elsenaar 
(1988a) provides a pragmatic criterion for defining sensitivity: "Reynolds number effects 
are large when they affect significantly the design (performance) of an aircraft as derived 
from sub-scale wind tunnel testing. Three drag counts variation in drag-creep will be 
significant for a transport type aircraft, but irrelevant for a maneuvering condition of a 
fighter aircraft." For a transport aircraft, the wing is the component most sensitive to 
Reynolds number change. Figure 1 shows the fiow physics typically responsible for such 
sensitivity, which include boundary layer transition, shock / boundary-layer interaction 
and trailing-edge boundary-layer separation for transonic cruise conditions and the same 
features for a high-Hft configuration in addition to confluent boundary layers, possible 
re-laminarization and leading-edge separation bubbles. 

The nature of the interaction between a shock wave and an attached boundary layer 
depends largely upon whether the boundary layer is laminar or turbulent at the foot of 
the shock. For a laminar boundary layer, separation of the boundary layer will occur 
for a relatively weak shock and upstream of the freestream position of the shock. The 
majority of the pressure rise in this type of shock / boundary-layer interaction, generally 
described as a A shock, occurs in the rear leg. The interaction of the rear leg with the 
separated boundary layer causes a fan of expansion waves that tend to turn the fiow 
toward the wall, and hence re-attach the separated boundary layer. This is in contrast 
to the interaction between a turbulent boundary layer and a shock wave, in which the 
majority of the pressure rise occurs in the front leg of the shock wave. The expansion 
fan that causes reattachment of the laminar separated boundary layer is therefore not 
present, and the turbulent boundary layer has little tendency to re-attach. 

Herein lies the problem of predicting the flight performance of an aircraft when the 
methods used to design the aircraft have historically relied upon wind tunnels operating 
below flight Reynolds number, together with other tools such as Computational Fluid Dy- 
namics (CFD), empirical and semi-empirical methods and previous experience of similar 
design aircraft. Industrial wind tunnels such as the NASA 12ft and lift, Boeing Transonic 
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FIGURE 1. Flow features sensitive to Reynolds number for a cruise and high-lift configuration 
(Mack & McMasters (1992)) 

Wind Tunnel (BTWT) and the DERA (now QinetiQ) 5m can only achieve a maximum 
chord Reynolds number of between 3 x 10® and 16 x 10®, compared with a typical value 
of 45 X 10® for cruise conditions. Therefore historically, results from wind tunnels have 
to be extrapolated to flight conditions in a process known as Reynolds-number scaling. 

Comparison of wind tunnel and flight test results requires great caution as true Reynolds 
number eS'ects, deflned by Elsenaar (1988a) as the "change in flow development with 
Reynolds number for a particular configuration in free air," must be separated from 
scale and pseudo-Reynolds number effects that are a result of wind tunnel testing. Scale 
effects are characterised by Haines (1994) as those due to the model geometric fidelity 
and aeroelastic effects. The geometric fidelity of the model will not be as high as one 
would like because it is not possible to reproduce the many fine details of the aircraft at 
a small scale. This effect can be particularly important for military aircraft with external 
stores as discussed by Haines (1994), although it can be equally important for transport 
aircraft where the engines are not normally represented and the width of the slat and 
flap tracks may be larger than those scaled correctly, in order to withstand the high 
aerodynamic loads encountered in a high-lift configuration. Aeroelastic eflfects are also 
important because the model is rigid compared to the relatively flexible structure of the 
aircraft. The model wing is designed for Ig cruise conditions with the geometric twist 
matched to that of the wing at the same conditions in flight. Any deviation from this 
operating condition, such as a variation in the tunnel dynamic head (to vary Reynolds 
number) or CL will mean that the twist of the model and aircraft wings will be different. 
Correction for aeroelastic effects must be made if the true Reynolds-number effects are 
to be shown. 

Pseudo-Reynolds-number effects are related to the wind tunnel facility. Wind-tunnel 
models are generally supported rather than free flying and the flow around them is 
constrained by the tunnel walls, and therefore support and wall interference must be 
accounted for correctly. The freestream flow may also have a different turbulent length 
scale, turbulence intensity and spectrum to that occurring in the atmosphere. Other 
effects which can be wrongly interpreted as Reynolds number effects include the tunnel 
calibration, buoyancy effects, thermal equihbrium and humidity, as discussed by Haines 
(1994). 

Haines & Elsenaar (1988) define two types of scale effect: indirect and direct, based 
upon the definition by Hall (1971) of scale effects being "the complex of interactions 
between the boundary layer development and the external inviscid flow." Direct and 
indirect Reynolds number effects are represented schematically in figure 2 and defined 
by Haines & Elsenaar (1988) as follows: 

• Direct Reynolds-number effects occur as a consequence of a change in the boundary- 
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FIGURE 2. Schematic representation of direct and indirect Reynolds number effects (Elsenaar 
(1988a)) 

layer development for a fixed (frozen) pressure distribution. Examples of "direct" effects 
range from the well-known variation of skin friction with Reynolds number for a given 
transition position to complex issues such as changes in the length of a shock-induced 
separation bubble for a given pressure rise through a shock 

• Indirect Reynolds number effects are associated with changes in the pressure dis- 
tribution arising from changes with Reynolds number in the boundary-layer and wake 
development. An example of an indirect effect is when changes in the boundary-layer 
displacement thickness with Reynolds number lead to changes in the development of su- 
percritical flow, and hence in shock position and shock strength. Therefore, a change in 
wave drag with Reynolds number at a given CL or incidence, can appear as an indirect 
Reynolds-number effect. 

Haines (1987) provides a historical review of scale effects up to 1987, and gives examples 
of aircraft where direct effects dominated the wing flow, and indirect effects were probably 
small. The examples given are those of the VC-10 and X-1 aircraft, and correlation 
between wing pressure distributions in the wind tunnel and in flight are good. It is 
observed that the shock position in flight is slightly aft of that found in the tunnel test for 
these test conditions, when the flow is attached, with little or no trailing edge separation, 
and is turbulent. The reason for this behaviom: in these two cases is the thinning of the 
boundary layer with increasing Reynolds number, with the displacement thickness being 
roughly proportional to Re'i. The effective thickness of the wing therefore decreases 
and the effective camber increases with increasing Reynolds number. The shock wave 
wfll move downstream with reduced viscous effects until the hmiting case of inviscid flow 
is reached. If however, CL is kept constant for a given Mach number, and the Reynolds 
number varied, the increased aft loading must be compensated by a decrease in the 
load over the front of the aerofofl. This is generally accomphshed by a decrease in the 
angle of incidence, which normally results in the forward movement of the shock wave. 
The final outcome of these opposing effects will depend upon their relative strength, as 
demonstrated by Elsenaar (1988b). 

When the flow is attached or mostly attached, indirect Reynolds-number effects ap- 
pear to be small. However, when the flow is separated large variations in the pressure 
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FIGURE 3. Comparison of C-141 wing pressure distributions between wind tunnel and flight 
for, (a) subcritica! and (b) supercritical flow(Elsenaar (1988b)) 

distribution can result with varying Reynolds number i.e. indirect effects can be large 
as demonstrated in figure 3. Aside from the separation that can occur due to an adverse 
pressure gradient at the trailing edge, shock-boundary layer interaction is one of the pri- 
mary causes of separation in transonic flight. Following the work of Pearcey et al. (1968) 
such flow separations are classed as either type A or B. 

Elsenaar (1988b) describes the differences between type A and type B separation, and 
states that the final state is the same both, namely a boundary-layer separation from the 
shock to the trailing edge. However, the mechanism by which this final state is achieved, 
differs for the two. For a type A separation, the bubble that forms underneath the foot 
of the shock grows until it reaches the trailing-edge. The type B separation has three 
variants, with the common feature being a trailing edge separation that is present before 
the final state is reached. The final state is reached when the separation bubble and 
trailing-edge separation merge. 

The type B separation is considered to be more sensitive to Reynolds number than tjT)e 
A. This is partly because the trailing-edge separation is dependent upon the boundary- 
layer parameters such as its thickness and displacement thickness. Furthermore, it was 
shown by Pearcey & Holder (1954) that the supersonic tongue that exists in a shock- 
boundary interaction is the dominant factor in the development of the separation bubble, 
and that the incoming boundary layer is less important. Moreover, the local shock Mach 
number that causes shock-induced separation is a weak function of the freestream Mach 
number. Relevant to wind tunnel-to-flight scaling is the possibility that at sufficiently 
high Reynolds numbers, the trailing edge separation will disappear and the type B flow 
that is observed in wind tunnels becomes a type A separation at flight conditions. 

The behaviour of the trailing-edge separation and that of the separation bubble are 
highly coupled, with the trailing-edge separation amphfied by the upstream effects of the 
shock-boundary layer interaction. The trailing-edge separation will modify the pressure 
distribution in a RejTiolds-number-dependent manner, and this in turn will alter the 
shock strength and the conditions for separation at the foot of the shock. This will then 
affect the boundary layer at the traihng edge. The sensitivity to Reynolds number of 
this interaction process will be dependent upon the pressure distribution and hence the 
type of aerofoil (Elsenaar (1988b)). It is also argued that most pre-1960 aerofoils show a 
rapid increase in shock strength with increasing Mach number and angle of incidence. By 
implication viscous effects would be small, and the dominant effect would be lengthening 
of the shock-induced separation bubble. By contrast, modern supercritical aerofoils are 
designed to Umit the variation in shock-wave strength and have higher aft loading and 
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hence greater pressure gradients over the rear of the aerofoil. Viscous effects will therefore 
be more important for these aerofoils and there performance more sensitive to Reynolds 

number. 
As demonstrated by figure 3, estimation of aircraft performance and characteristics 

based upon data from wind-tunnel tests at low Reynolds number can lead to flight 
performance that is worse than that predicted. In the case of the C-141, the wing pressure 
distribution in flight shows that the shock is further aft than predicted by the wind tunnel 
tests. This increased aft loading meant that the pitch characteristics of the wing were 
very different in flight to that predicted and this necessitated a complete re-design of the 
wing. There are many examples of where flight performance is worse than predicted using 
wind tunnel tests at lower Reynolds numbers, some of which are given by Wahls (2001). 
Examples include higher than expected interference drag of the F-111 airframe, the lack 
of performance benefit for the DC-10 using a drooped aileron and recently the wing- 
drop phenomenon of the F/A-18E/F Super Hornet (Stookesberry (2001)). The fiight 
performance need not be worse than predicted from wind tunnel data, with the example 
given by Wahls (2001) of the increased cruise speed of the C-5A due to a delayed drag 
rise in flight. 

The fact that the flight performance is better than predicted means that the design 
point was calculated incorrectly and raises the possibiUty that the design is overly con- 
servative. The financial incentives for designing and predicting the flight performance of 
an aircraft at high Reynolds numbers are large. This is true not only for the aircraft 
manufacturer, who has to meet certain performance guarantees or face stiff financial 
penalties or a costly re-design, but also for the aircraft operator. Mack & McMasters 
(1992) reported that a 1% reduction in drag equates to several million dollars in savings 
per year for a typical fleet of aircraft. Bocci (1979) examined what performance might 
be lost by designing an aerofoil at a typical test Reynolds number of 6 x 10® instead of 
a typical full-scale Reynolds number of 35 x 10®. The results were gained by calculating 
the 2D transonic flow over an aerofoil section, and it was found that: 

(a) The CL for the section designed (using CFD) to operate at fiec = 6 x 10® , but 
simulated at Rsc = 35 x 10® is 4% higher for the same Mach number and shock strength 
on the upper smrface. 

(6) For the aerofoil section designed (using CFD) for a Reynolds number of 35 x 10®, 
the improvement in CL is 13% over the section designed and simulated at a Rejmolds 
number of 6 x 10®. 
The accurate prediction of flight performance would also save time in the development 
process by reducing the number of wind-tunnel hours, flight-test hours and design itera- 
tions. The use of CFD has helped reduce the upward trend in the number of wind-tunnel 
hours required to develop an aircraft (Beach & Bolino (1994)), although approximately 
20,000 wind tunnel hours were still required to develop the Boeing 777-200. 

Differences between predicted and flight performance have led to many different meth- 
ods of simulating the flight Reynolds number flow using low Reynolds number testing 
facilities. In flight, transition normally occurs near the leading edge of the wing, and the 
boundary layer interacting with the shock wave is therefore turbulent. In wind tunnels, 
it is possible for the boundary layer to remain laminar over a large percentage of the 
chord, and therefore a laminar boundary layer-shock interaction may occur. These two 
types of interaction are vastly different in their nature, and therefore the flow is generally 
tripped. For many years the standard method of transition fixing was to place narrow, 
sparse bands of carborundum or ballotini at chordwise positions of between 0.05c and 
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0.07c. This worked well for many aerofoils pre-1960, but not for the highly-aft-loaded 
sections such as the C-141 where a trailing edge separation exists. The sensitivity of a 
type B flow to transition location and the degree of roughness is discussed by Haines 
(1987) for the NPL 9240 and 9241 sections, whose only difference is a very slight change 
in the upper-surface thickness aft of the point of maximum thickness. The pressure dis- 
tribution of the NPL 9241 shows that a small incipient trailing-edge separation exists at 
Mach 0.6, which is not present for the NPL 9240. The CL — M plot for the two sections 
shows that when fine sparse roughness is used at 10-15% chord the behaviour of the two 
is similar. However, the differences are large when coarse roughness is used close to the 
leading edge, and the effects of a shock-induced separation on the break in the Uft data 
are greater for the 9241 section. 

The increased sensitivity of type B flows to scale effects led to steps being taken to sim- 
ulate the high-Reynolds-number flow more accurately by reducing the non-dimensional 
boundary-layer thickness on the model to a value close to that found in flight. One 
method of achieving this is known as aft-fixing, allowing the boundary layer to remain 
laminar and thin over the forward part of the wing and then fixing transition aft of where 
it occurs naturally in flight, but far enough ahead of the shock wave to avoid any local 
interaction of the shock and the transition trip. This technique has proved to be capable 
of alleviating the rear separation found in model tests for 2 x 10® < RBC < 6 X 10®, which 
are not expected to occur in fhght (Haines (1987)). 

Three-dimensional effects complicate the use of the aft-fixing technique on typical high- 
aspect-ratio transport aircraft wings. Near the wing root there is often a double-shock 
pattern with the intersection point to the single outboard shock often close to the kink- 
section of the wing. The leading shock in the double-shock pattern is often close to the 
leading edge of the wing, and therefore the aft-fixing technique will not be appficable. 
Furthermore, the transition mechanism in a three-dimensional flow is different from a 
two-dimensional flow where the Tollmien-Schlichting instability is the primary cause. In 
a three-dimensional flow, cross-flow instability and leading-edge contamination can also 
contribute to transition. Transition also occurs near to the leading edge at the wing tip, 
and therefore if the aft-fixing transition method is to be used on a swept wing, the trip 
strip must be cranked and then only the mid-section of the wing is represented adequately. 
Elsenaar (1988b) discusses the effect of transition fixing upon the local sweep angle of 
the shock, and how this is important for drag evaluation because of the sensitivity of 
compressibihty drag to small variations in shock strength £md sweep angle. 

Alternative techniques to the aft-fixing method are discussed briefly by Elsenaar (1988b) 
and include vortex generators, boundary-layer suction and geometry modification on the 
sub-scale model. Haines & Elsenaar (1988) and Haines &: Elsenaar (1988b) discuss de- 
tailed methodologies for simulating the full-scale behaviour of an aircraft wing using 
sub-flight Reynolds-number facilities, and moreover what the most important simulation 
criteria should be, given that it is unlikely to be able to simulate them all. The simulation 
criteria fisted by Haines & Elsenaar (1988b) are: 

(a) Shock position 
(6) Shock strength 
(c) Non-dimensional momentum thickness at the wing trailing edge 
(d) Non-dimensional length of the shock-induced separation bubble 
(e) Boundary-layer shape factor at a position close to the traifing edge on the upper 

surface, or at any other position where separations are anticipated 
Even with complex simulation methodologies, the flight performance and character- 
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istics of an aircraft can be hard to predict using low-R«ynolds-number faciUties. This 
led to the recognition of the need for high-Reynolds-number testing facilities such as 
the National Ttansonic Facility (NTF) at NASA Langley and the European IVansonic 
Windtunnel (ETW) in Cologne, Germany. Both tunnels can operate at cryogenic tem- 
peratures using Nitrogen and from low Mach numbers (0.15-0.2) to supersonic Mach 
numbers (1.2-1.3). Importantly, they can operate at Reynolds numbers greater than that 
achieved in flight by typical transport aircraft, and are capable of varying temperature, 
pressure and velocity independently, allowing the separation of Reynolds number effects 
from aeroelastic effects. 

Despite the existence of the NTF and ETW, industrial and commercial wind tunnels 
are still required to carry out the majority of the development work for a new aircraft 
because of their relatively high productivity The ETW and NTF are viewed as research 
tunnels where Reynolds-number scaling methodologies can be developed and an aircraft 
design checked before its first flight. The requirement for RBynolds-number scaUng meth- 
ods has therefore not diminished with the advent of high-Reynolds-number facilities. 

To further understand the effects of scale upon aircraft performance and to establish 
a capability to account for them during the design process, the High Reynolds number 
Aerodynamic Research Project (ffiReTT) was commenced in January 2000 as part of 
the European Fifth Framework Programme. This project combined with others funded 
by the EC is part of a strategy that aims to make European aeronautics the World leader 
by the year 2020 (Argiielles et al. (2001)). 

The specific objectives of HiReTT are Usted by Rolston (2001) and include the testing 
of a modern aircraft research configuration with and without control devices at high 
Reynolds numbers and particularly at high subsonic Mach numbers. The database gained 
will be fully corrected for interference effects by evaluating and developing new and 
existing methods in the ETW and by using CFD. The results from the ETW will also 
be compared with the predictions of modem CFD methods, with a view to producing 
guidelines to enable CFD to predict such flows. 

The US does not at present have such a research program dedicated to Reynolds num- 
ber scaling, although between 1994 and 2000 the NASA Advanced Subsonic Transport 
(AST) program funded research into Reynolds number scaling using the NTF. There is 
undoubtedly a great deal of experience in scaling techniques in the US, with 57% of re- 
search investigations in the NTF since 1985, concentrating on subsonic transport aircraft 
(Wahls (2001)). Much of the data and knowledge however remains undisclosed due to its 
proprietary nature. 

The current status of Reynolds-number scaling can be assessed from a number of 
recent pubUcations resulting from the use of the NTF (Curtin et al. (2002) and Clark 
and Pelkman (2001)) and ETW (Rolston (2001), Quest et al. (2002), and Hackett et 
al. (1999)). The full details are too long to discuss in this brief, but an attempt at a 
summary is provided herein. 

(o) Angle of incidence at cruise, drag-rise Mach number, CL and CM are all functions of 
Reynolds number. Comparison of data from the NTF and ETW with flight measurements 
is very good for cruise conditions. 

(6) The effect of Reynolds number on drag can be predicted if the empirical relation- 
ship is matched to drag measured at a Reynolds number of 8-10 million or above. 

(c) The shape of drag polar varies with Reynolds number up to flight Reynolds num- 
bers of approximately 40 million, although vortex generators reduce the variation slightly. 

(d) Drag-rise Mach number is increased with increasing Reynolds number, indicating 
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FIGURE 4. Comparison of flat plate skin friction data with the relationships of Femholz (1971) 
and Coles (1962) (Femholz & Finley (1996)) 

that higher Reynolds number testing would predict a higher cruise Mach number than 
that achieved using a tunnel such as the Boeing Transonic Wind Tunnel (BTWT). 

(e) The effect of vortex generators on drag at cruise varies with Reynolds number, 
causing a higher drag at low Reynolds numbers and having very little or a shghtly 
beneficial effect at flight Reynolds numbers. Vortex generators also have little effect 
on spanwise loading at flight Reynolds numbers, compared with a large effect at low 
Reynolds numbers. This indicates that if wing loads were developed from low Reynolds 
number data, an unnecessary structural weight penalty would be paid. 

(/) Buffet onset is very difficult to predict, and is often difficult to measure in a wind 
tunnel because the model dynamics and that of the aircraft are very different. 

Drag estimation is an important part of the design process, and involves the predic- 
tion of wave drag, vortex-induced drag and viscous drag, with the latter contributing 
approximately 50% to the total drag during cruise (Thibert et al. (1990)). A simple es- 
timate of the scaled viscous drag is often gained by using a combination of form factors 
and flat plate skin friction formulae once the transition location is known. This method 
relies upon an accurate description of the skin friction coefficient, c/ from low Reynolds 
numbers found in wind tunnels to flight Reynolds numbers. 

2. Skin friction estimation 

There is a variety of empirical and semi-empirical relationships for the prediction of 
the turbulent incompressible skin friction on a flat plate. Common methods such as those 
based upon the ^-th power law and the logarithmic law (Schlichting (1968)) relate c/ to 
Rcx and suffer from the difliculty of an unknown origin. 

Femholz & Finley (1996) compare measurements of flat-plate skin friction from a 
variety of sources for 300 < Ree < 212 x 10^ to the empirical relationship of Coles (1962) 
and the semi-empirical relationship of Femholz (1971) as shown in figure 4. Agreement 
with the experimental data is within ±5% in the range 600 < Ree < 212 x 10^, although 
the agreement is better at higher Reynolds numbers. 

More recently, Watson et al. (2000) carried out a comparison of the semi-empirical re- 
lationships of Ludwieg & Tillmann (1950), Spalding (1962), Karmdn-Schoenherr (Schoen- 
herr (1932)) and Femholz (1971) as shown in figure 5. The methods of Karman-Schoenherr 
and Spalding show opposite trends at low and high Reynolds numbers with the inter- 
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FIGURE 6. Comparison of the flat plate data 
with the correlations and theories (Watson et 
at. (2000)) 

section point at Reg between 6000 and 7000. The relationship of Fernholz consistently 
underpredicts the skin friction compared to the other methods. The skin friction pre- 
dicted by Ludwieg-TiUmann matches that of Karman-Schoenherr for Reg between 3000 
and 20000. Both the methods of Spalding and Fernholz rely upon the logarithmic law 
and hence the von Karman constant re and the additive constant, B. Watson et al. (2000) 
report that the method of Spalding incorrectly predicts the skin friction if the usual value 
of K is used. This is because the relationship relies upon Spalding's sublayer-buffer-log 
profile which does not take the wake region into account correctly. Despite this, the rela^ 
tionships of Karman-Schoenherr and Spalding are observed to be the best fit to the data 
of Coles (1962) and Gaudet (1984) shown in figure 6. 

The relationships of Spalding and Karman-Schoenherr are used for comparison with 
the data taken in the National Transonic Facility (NTF) at NASA Langley in 1996. 
Although a flat-plate experiment was originally proposed by Saric & Peterson (1984), 
it posed too many problems in the high-dynamic-pressure environment of the NTF. An 
axisymmetric body, 17ft long, for which transverse-curvature effects are smaU {5/R = 
0.25) was therefore tested at Mach numbers between 0.2 and 0.85 and unit Reynolds 
numbers from 6 x 10^ to 94 x 10^ per foot. Skin friction was measured using three 
different techniques: a skin firiction balance, Preston tubes and velocity profiles from 
which the skin firiction was inferred by the Clauser method. The last method relies upon 
the validity of the logarithmic law and the constants used, which have been a subject of 
debate over the last decade, and one that is still not settled. Kites et al. (1997) compared 
the skin friction velocity tt^ measured by a near-wall hot wire, a microfabricated hot wire 
on the wall, and a conventional hot wire on the waU to that obtained by measuring the 
velocity profile using a hot wire and applying the Clauser technique. In all cases, the 
measured Ur is higher than that predicted by the Clauser technique. The prediction of 
Ur is also sensitive to the values of re and B used in the log-law, with a ±0.5 change in 
the slope l/re resulting in a 12% difference in Ur- The comparison of the measured values 
of Ur to that predicted by the Clauser method should however be treated with care as 
significant errors can occur, even for microfabricated devices, due to thermal conduction 
to the substrate and connecting wires. 
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FIGURE 7. Comparison of three measurement techniques of skin friction with the data of 
Gaudet (1984) and with the predictions of Karmdn-Schoenherr and Spalding (Watson et al. 

(2000)) 

Compressibility effects on the skin friction are removed using the van Driest trans- 
formation (Van Driest (1951)) for the velocity-profile data and the Sommer and Short 
T' method (Sommer & Short (1955)) for the Preston-tube data. Using the Van Driest 
transformation for the velocity profile at the highest Reynolds number condition yielded 
an incompressible Ree of 619,800. 

Data obtained using the skin friction balance exhibits a large degree of scatter and 
these data were therefore not relied upon. The data from the Preston tubes and velocity 
profiles shows good agreement, and yields a best fit relationship of c/ = 0.0097iie^°"^ 
shown in figure 7. The scatter of the data around this fit is ±1%, with the fit 1% above the 
Spalding value and 3% above the Karmdn-Schoenherr value at iZeg=600,000. It equals 
the Spalding value at i2ee=30,000. 

Skin friction measured in two facilities using the near-wall technique and oil-film in- 
terferometry is compared by (Osterlund et al. (1999)) for Ree up to 27000. The data 
compare well with the correlation of Fernholz (1971) and the logarithmic skin-friction 
law using K = 0.384 and B = 4.08. However, the range of Ree considered is too small, 
and the maximum Reynolds number too low, to draw conclusions about the suitability 
of the correlation and logarithmic skin friction law at high Reynolds number. 

3. Conclusions 

Reynolds number scaling remains a topic that receives a great deal of attention 50 
years after such effects were first observed. The advent of high Reynolds number tunnels 
such as the NTF and ETW has not lessened the need for good Reynolds number scaling 
techniques, but has provided the faciUties in which to test new methods and aircraft 
designs before their fixst flight, helping to reduce risk. Comparison of flight data with 
that taken in such tunnels is good for cruise conditions. However, buffet onset is still very 
difficult to predict, due primarily to the fact that the wind tunnel model and support 
dynamics are very different to the real aircraft. 
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The accurate prediction of drag at flight Reynolds number using low Reynolds number 
wind tunnels remains a challenge, and it appears that a Reynolds number of 8-10 mil- 
lion or above is required if empirical methods are to be used for extrapolation to flight 
conditions. The error in the extrapolation is likely to be higher than the variation of c/ 
with Reynolds number predicted by the best empirical methods discussed. It is therefore 
concluded that the measurements of skin friction taken in the NTF over a very large 
range of Reynolds number match the predictions of Spalding and Karman-Schoenherr 
well enough for skin friction extrapolation purposes. The direct and accurate measure- 
ment of skin friction however remains very challenging, although microfabricated skin 
friction devices axe proving promising. 
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